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Abstract: Model Predictive Control (MPC) has become a popular control strategy, especially
within process control, where the handling of constraints and multiple inputs and outputs
are essential. As the performance of the controller is crucially linked to the models predictive
capabilities, model uncertainty can reduce the performance significantly. Robust MPC has been
proposed to handle model uncertainty, but often leads to overly conservative solutions. In this
paper, we propose a new stochastic scenario based formulation for robust MPC, where feedback
is explicitly introduced in the optimization problem, to allow both state and parameter updates.
The updates are conducted based on measurements from the different scenarios, and we use an
Ensemble Kalman Filter (EnKF) for state and parameter updating. The resulting controller is
an implicit dual MPC, and as shown in an example, applies perturbations for identification only
if it will return itself over the prediction horizon.
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1. INTRODUCTION

MPC solves an optimization problem at every control step.
The plant behaviour is predicted by a model, obtaining a
trajectory over the prediction horizon. This allows formu-
lating constraints on both the decision variables and the
future predicted states. Only the first control step is used,
because at the next control step the optimization problem
is solved over again. The prediction horizon is then shifted
forward in a receding manner, and because of this, MPC
is also known as receding horizon control.

The model is crucial for the performance of an MPC. If
the model fails to capture the dynamics of the plant, the
calculated control will be suboptimal for the real plant. An
MPC will never be better than the model used in the opti-
mization. Even when great care is taken in the modelling
phase, there can be uncertainty in the model. Some param-
eters can be difficult to estimate precisely, while quantities
such as future raw material cost are stochastic in nature.
Also the estimate of the current state can be uncertain.
Although both states and parameters are known to be
uncertain, they are usually treated as if they were precisely
known. This results in the expected value problem, that is,
the optimization problem is solved assuming the expected
value of the states and parameters are the actual ones. The
expected value problem basically ignores the uncertainty
involved. This often yields very good performance, and
when the actual quantities are close to the expected value
of the estimates, the solution is nearly optimal for the real
plant. However, the performance can deteriorate quickly
when the actual parameters deviate from the expected
value.

A recent extensive review of MPC is provided in Mayne
(2014), where a substantial part is on MPC for uncertain

systems. When dealing with uncertain systems, there are
several challenges emerging. Because of the uncertainty, it
is not possible to perfectly predict the behaviour of the
plant. However, we assume that we will obtain measure-
ments in the future, and we can apply feedback to com-
pensate for the model uncertainty. Depending on whether
this feedback possibility is included in the optimization
problem, we arrive at what is known as open loop or closed
loop predictions. In the case of open loop predictions, the
control input is calculated as a sequence over the control
horizon, with no concept of feedback. The control is, how-
ever, applied in a feedback manner, since the problem is
solved at every control step. This control strategy is also
denoted as open loop feedback. Closed loop predictions on
the other hand, foresee that measurements will become
available, and is denoted as closed loop feedback. It is
often posed as an optimization problem optimizing over
feedback policies, such as uk = Kkxk, where xk and uk

are the states and control input at time tk. If we do
not parametrize the control in terms of feedback policies,
the closed loop predictions naturally lead to a multi-stage
stochastic programming problem, as in Lucia et al. (2013).
Exact full state information at every stage is assumed, but
relaxed in later work. In Subramanian et al. (2014), an
Extended Kalman Filter (EKF) is used in a multi-stage
output NMPC, while an Unscented Kalman Filter (UKF)
is used in the recently published work Subramanian et al.
(2015).

This partitioning in open and closed loop predictions is
irrelevant for the deterministic case, as there is no new
information to be obtained, and the two are equivalent
(Rawlings and Mayne, 2009). Another aspect when con-
trolling uncertain systems, is the possibility of gaining
new knowledge of the uncertain parameters in the future.
System identification is often conducted as a separate
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the other hand, foresee that measurements will become
available, and is denoted as closed loop feedback. It is
often posed as an optimization problem optimizing over
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are the states and control input at time tk. If we do
not parametrize the control in terms of feedback policies,
the closed loop predictions naturally lead to a multi-stage
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Exact full state information at every stage is assumed, but
relaxed in later work. In Subramanian et al. (2014), an
Extended Kalman Filter (EKF) is used in a multi-stage
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This partitioning in open and closed loop predictions is
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uncertain, they are usually treated as if they were precisely
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involved. This often yields very good performance, and
when the actual quantities are close to the expected value
of the estimates, the solution is nearly optimal for the real
plant. However, the performance can deteriorate quickly
when the actual parameters deviate from the expected
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A recent extensive review of MPC is provided in Mayne
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task, independent of control. The two tasks are, however,
closely coupled, as the result of the system identification
is directly linked to the control input applied.

Control of uncertain or time varying systems have been
studied within adaptive control, and the branch on dual
control is especially relevant from an MPC perspective.
In dual control, the controller has the two goals of con-
trolling the system and obtaining more information about
the uncertain system. These goals are often viewed as
conflicting, as perturbations for better identification will
decrease the performance of the control. However, better
identification might yield a reward in the future because
it allows for better control, and the perturbation should
only be conducted if it will return itself. The dual goal of
the controller was first considered in the seminal work of
Feldbaum (1960). The dual problem is however computa-
tionally intractable for all except the simplest problems,
and approximations must be applied. Dual control is often
divided into explicit and implicit dual control. In the case
of explicit dual control, there is an explicit trade-off be-
tween controlling the plant and reducing the uncertainty.
Implicit dual control on the other hand, rewards reduction
in uncertainty only if it can be exploited at later stages.
The formulation suggested in this paper is an implicit dual
controller based on scenarios.

In general, most of the work on MPC for uncertain
systems is on robust MPC. An overview of robust MPC
can be found in Rawlings and Mayne (2009, Ch. 3).
For robust MPC, the problem is formulated to minimize
the worst case behaviour over all possible realizations of
the uncertainty. Constraints must also be satisfied for
all possible realizations. In order to make the problems
tractable, the uncertainty is required to be restricted
to some compact set. When model uncertainties and
disturbances are unbounded, robust feasibility can never
be guaranteed, and an alternative formulation is necessary.
Examples of this is to require constraints to be satisfied in
terms of expected value (Primbs and Sung, 2009), or by
probabilistic constraints (Schwarm and Nikolaou, 1999).

There is little published work on dual MPC. In Genceli and
Nikolaou (1996), additional constraints to the MPC formu-
lation is introduced to assure persistent excitation in the
input signal, allowing for efficient system identification. A
similar approach is also found in Marafioti et al. (2014). In
Bayard and Schumitzky (2010), an implicit dual controller
using particle filtering and forward dynamic programming
is proposed. They use a policy-iteration method, but is
limited to a finite number of control values at each con-
trol step. An explicit dual MPC formulation is found in
Heirung et al. (2013), where there is a trade-off between
minimizing uncertainty or maximizing information con-
tent, and controlling the nominal trajectory.

The formulation in Subramanian et al. (2015) has a
clear similarity to our approach, both employs a stochas-
tic multi-stage formulation incorporating future measure-
ments. Our approach, however, also update the uncertain
parameter estimates. In this way, we obtain an implicit
dual formulation. Furthermore, Subramanian et al. (2015)
employ an UKF for model updating, while we propose
to use an EnKF. The formulation of Subramanian et al.
(2015) could, however, be extended to also update param-

eter estimates, making it an implicit dual formulation as
well.

The remainder of the paper is organized as follows: In
section 2, the basic idea of the proposed controller is
presented, including the mathematical formulation and the
details on the EnKF. In section 3, we perform a case study
illustrating the effect of the formulation, and provide a
discussion of the results in section 4. At the end, some
concluding remarks are given.

2. SCENARIO BASED IMPLICIT DUAL MPC

Including future measurements in the optimization prob-
lem is not trivial. However, we want to include the fact that
at later control steps, we know more than we currently do.
This new knowledge is obtained through measurements,
which allows us to update both state and parameter es-
timates. In this paper, we formulate the problem as a
multi-stage stochastic programming problem, where future
measurements are explicitly included in the optimization
problem. The idea is that at the current time step, we
have a set of N scenarios, also denoted as an ensemble,
describing what we know about the model and state esti-
mates. The states are propagated forward in time by the
simulation model. At the next control step, we know that
a measurement will become available, but we do not know
what it will be. Our best estimate is, however, that it
will be based on one of the N scenarios. If we use one of
the scenarios as a “virtual” measurement, we can update
all the scenarios. However, we do not know what the
measurement will be, and all scenarios are just as likely as
the others. We can first update the ensemble using the first
scenario, to obtain N new model scenarios. This can be
done for all the other scenarios, resulting in N2 scenarios.
Doing this recursively for nr time steps, we will have
Nnr+1 scenarios. As this grows exponentially, the number
of steps has to be kept low. After the nr steps, we assume
no model updates are available, propagating the scenarios
over the rest of the prediction horizon without further
“branching”. A simple schematics of the control structure
is seen in Figure 1. Model propagation is illustrated by
solid lines, while dotted lines are model-updating using
virtual measurements. We start with 3 scenarios, and after
1 model update we have 9 scenarios. The control input has
to be the same for the first step, and all scenarios coming
from the same state/parameter update, at a total of 4
decision variables for the figure shown.

Although the problem size grows quickly, the hope is
that including just a few steps will be enough to include
the effect of feedback. For an MPC, the optimization
problem will be solved at every control step in a receding
horizon manner. In this work, we focus on the optimization
problem at a single time step, although it can easily be
extended in a receding horizon manner.

Using scenarios, also denoted as realizations, suggest that
some sort of particle filter could be used for the state and
parameter updates. In this work, we use the Ensemble
Kalman Filter (EnKF) to update the estimates for the vir-
tual measurements. This naturally leads to a set of N new
scenarios for each new measurement, and no re-sampling is
needed. Furthermore, by treating the parameters as state
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