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Abstract: By now many results with respect to the fast and efficient implementation of model predictive
control exist. However, for moving horizon estimation, only a few results are available. We present a
simple solution algorithm tailored to moving horizon estimation of linear, discrete-time systems. In a first
step the problem is reformulated such that only the states remain as optimization variables, i.e. process
and measurement noise are eliminated from the optimization problem. This reformulation enables the
use of the fast gradient method, which has recently received a lot of attention for the solution of model
predictive control problems. In contrast to the model predictive control case, the Hessian matrix is time-
varying in moving horizon estimation, due to the time-varying nature of the arrival cost. Therefore, we
outline a tailored method to compute online the lower and upper eigenvalues of the Hessian matrix
required by the here considered fast gradient method. In addition, we discuss stopping criteria and
various implementation details. An example illustrates the efficiency of the proposed algorithm.
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1. INTRODUCTION

State estimation plays a fundamental role in many applications.
It is often elementary for monitoring a system and frequently
utilized in combination with a state feedback controller to sta-
bilize a system. Estimation methods based on Kalman filtering,
compare Kailath et al. (2000), which are predominantly used
in applications, do not allow to easily include constraints on
the variables in a structured way. Therefore, Moving Horizon
Estimation (MHE) has received increasing interest since it can
effectively take constraints on the variables into account. MHE
is, similarly as its control “relative” Model Predictive Control
(MPC), based on the online solution of an optimization problem
over a finite horizon. Therefore, the challenge of an efficient
real-time implementation arises, especially for high sampling
rates, limited computation power or large scale systems.

In comparison to fast MPC there are only limited results with
respect to the efficient implementation of MHE available.

For fast MHE, different approaches have been investigated
based on tailored solution approaches for the underlying op-
timization problem. For nonlinear systems results based on
combinations of direct multiple shooting with Gauss-Newton
iterations, see (Diehl et al., 2005; Kraus et al., 2006), or sensi-
tivity analysis and nonlinear programming, see e.g. Zavala et al.
(2008), exist. Also approximation based methods utilizing for
example singular value decompositions, see Jang et al. (2014),
or in situ adaptive tabulation, see Abrol and Edgar (2011), have
been considered.

Darby and Nikolaou (2007) implemented a look-up table and
function evaluation for real-time implementation of MHE for
linear systems. Similarly to MPC, however, the number of
polytopes generated in the approach tends to grow combina-
torially with the number of constraints, which limits the size
of the problem that can be handled. Haverbeke et al. (2009)
developed a primal barrier interior-point method algorithm for
linear system exploiting the system structure.

For moving horizon estimation of constrained, linear, discrete-
time systems we propose a simple, tailored algorithm based on
Nesterov’s fast gradient method (Nesterov, 1983, 2004). Fast
gradient methods have recently received considerable attention
for the solution of optimization problems arising in model
predictive control, see e.g. Faulwasser et al. (2014); Jerez et al.
(2014); Kogel and Findeisen (2011); Patrinos and Bemporad
(2014); Richter et al. (2012, 2010); Zometa et al. (2012).

To enable the efficient solution of the MHE problem using the
fast gradient method we propose to eliminate the optimization
variables related to the noise from the optimization problem.
This results in a sparse formulation with only the states as
optimization variables. In contrast to MPC, in MHE the Hessian
matrix and thus also its eigenvalues are time-varying due to
the arrival cost. Since the fast gradient method requires the
largest and smallest eigenvalues of the Hessian matrix (or tight
bounds on them), we discuss how to efficiently compute these
based on the so-called inverse iteration, (Golub and Van Loan,
2012). Additionally, we review stopping criteria and discuss the
implementation of the proposed algorithm. The applicability
and performance of the presented method is illustrated by an
example.
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The remainder of this work is structured as follows. Section 2
presents the problem formulation. In Section 3 we illustrate
how to formulate the optimization problem by using only the
states as optimization variables. Section 4 gives a detailed
description of the proposed solution method. In Section 5 we
illustrate the results. Finally, we provide a summary and outline
future working directions.

2. PROBLEM FORMULATION

This section presents the class of considered systems and out-
lines the moving horizon estimation procedure.

2.1 Considered problem class

Time-invariant, discrete-time, linear systems of the form

X1 = Axg + Buy + wy, (D

Vi = Cxy + vy

are considered, were k > 0 denotes the time, x; € R" the
state, ur € R™ the known input, w; € R” the unknown process
noise, yx € R? the observed output and v; € R? the unknown
measurement noise. The matrices have appropriate dimensions
and (A,C) is assumed to be detectable.

We assume that the state x; and the measurement noise v; are
each constrained to polytopic, compact, convex sets: x; € X
and v; € V. Often, process noise wy and measurement noise v
are assumed to be (approximately) zero mean, Gaussian white
noise with covariances given by Q and R, respectively, compare
Rawlings and Mayne (2009). For the initial state xj, an estimate
Xo with covariance Il is available at k = 0. Note, while this
provides for MHE somehow a relation to the stochastic optimal
Kalman Filter, a pure deterministic setting is also possible. We
assume that Q, R and I are positive definite.

Remark 1. (Neglection of bounds on the process noise wy)
Considering bounds only on the state and measurements is
motivated by many practical applications: constraints on the
state x can represent physical boundaries (e.g. concentrations,
temperature, pressures, liquid level) and constraints on the
measurements noise vy can be obtained from the specification
of the sensors (e.g. maximum error). In contrast, it is often more
difficult to obtain bounds on the process noise wy, except in a
few special cases such as e.g. in (Rausch et al., 2014).

2.2 Moving horizon estimation

To estimate the state xz, k > 0 of system (1) based on the
information available before the time instant k, one can use
moving horizon estimation, see (Rao et al., 2001; Rawlings and
Mayne, 2009) and the references therein for more details. The
optimization based nature of MHE allows to take the bounds
on x; and v; into account; in contrast to classical estimation
techniques such as Kalman filtering, see Kailath et al. (2000);
Rao et al. (2001); Rawlings and Mayne (2009).

The general idea in MHE to estimate x;, c.f. Rawlings and
Mayne (2009), is to solve at each time instant

In}r,l\J({’; VAV, i7i‘\‘7 H\) (2)
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s.t. £j11 =AX; +Bu;+W;
yji= CXj+9;
X € X, \’/\j ev,
where s = max(0,k — N) denotes the start of the estimation
window, N is the (maximum) estimation window size, also

called estimation horizon, i = s,...,k, j=s,...,k— 1l and X =

{)2,‘}, V= {\7]'}, W= {v?{,-}, u= {uj} andy = {yj}. Xs, 8 >0, 1s

the prior estimate of x; using the information available prior to
k = s. The cost function J is given by
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where the choice of the so-called arrival cost matrix I, which
weights the influence of the estimate X for i > 0, is discussed
below. As an estimate for x; at each time, the optimal value of
£ from (2) is used: & = £ !

|
+ EHXS_XSH

The choice of the estimation windows size N is a trade-off
between the maximum size of the optimization problem (2)
and the estimation performance: using a smaller N reduces the
computational demand, but can lead to deteriorated estimates.

Note that the optimization problem (2) is a convex, quadratic
program, which needs to be solved at every time-instance, so
an efficient solution is of key interest. Therefore, we present in
the following sections a tailored solution approach.

Remark 2. (Arrival cost matrix I1;, choice of %;)

The choice of the arrival cost matrix 11; and the choice of
X; are crucial for a good estimation performance. Incorrect
choices can lead to inferior estimation and even an unstable
estimation error dynamics, see (Rao et al., 2001; Rawlings
and Mayne, 2009) for more details. We consider here only the
simple approach using the prior state estimate X; as estimate
of x; computed at k =i — 1 and to update 11; using a Kalman
filtering update

My =AY AT +Q, (4a)
¥ =I1; — IL,CT (CI.CT +R) ™! CIy. (4b)

Note that T1; will converge to a unique fix point 1., where the
matrix . as well as T1; are positive definite, because (A,C)

is detectable, (A,W%) is stabilizable and V, Iy are positive
definite, compare Kailath et al. (2000).

Remark 3. (Feasibility of MHE problem (2))
Since wy is not constrained, the arising optimization problem
is always feasible under the assumptions made, i.e. that the
measurements are consistent with V and X: for every yy there
exists xi and vy such that y = Cx;+ vy, x € X and v € V.
There is always a wy, such that (1) is satisfied.

3. REFORMULATION OF THE OPTIMIZATION
PROBLEM

We first formulate the MHE optimization problem (2) such that
the optimization is performed only over the state trajectory
X, i.e. eliminating the noise sequences W and V. This idea
is inspired by similar ideas exploited in MPC, c.f. Mancuso
and Kerrigan (2011), where the inputs are eliminated from the
control variables to increase the speed of interior point methods.

First one can straightforwardly eliminate the measurement
noise V as optimization variable, see Haverbeke et al. (2009),
by replacing Hﬁ,ﬂa,l, v; € Vby ||y; —C)?,'Hé,l andy;,—C%; €V,
respectively. The resulting optimization problem possess as

! Note that we consider here an estimate £; using only information available
prior to the time instance k: the so-called predicted or a priori estimate, compare
Kailath et al. (2000). The proposed approach can be extended such that also yy
is used, i.e. to obtain the a posteriori (also called filtered) state estimate.
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