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Abstract: In this paper, a sequential quadratic programming method is presented for large-
scale nonlinear and possibly non-convex model predictive control (MPC) optimization problem
which is often set up with a separable objective function. By introducing the so-call consensus
constraints to separate the couplings among the subsystems. The resulting QP subproblem is
formulated in a separable form, which makes it possible to use the existing alternating direction
methods, like ADMM, to efficiently compute Newton steps for the overall system in a distributed
way. In order to enforce the convergence rate of the distributed computation, a distributed line
search with local merit functions is also proposed.
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1. INTRODUCTION

Model predictive control (MPC) is by far the most suc-
cessful control technology for constrained systems, which
require to solve an optimization problem at each sampling
time, based on a given system model to plan the future
control moves. Three essential components of MPC are
moving or shifted horizon, online optimization and simu-
lation model. During the last two decades, a lot of well-
established theoretical results were developed on how to
guarantee feasibility and stability for constrained linear
or piecewise affine systems (Mayne et al. (2000)). On the
other hand, considerable efforts have been put on develop-
ing fast real-time MPC optimization algorithms to solve
the formulated MPC optimization problem efficiently for
such systems. Specifically, Nesterov’s fast gradient meth-
ods Richter et al. (2012), interior-point methods Wang
and Boyd (2010); Rao et al. (1998), active-set methods
Ferreau et al. (2013) and alternating direction method of
multipliers (ADMM) Annergren et al. (2012) have been
adopted for the banded sparse QP structure of MPC prob-
lems with quadratic costs. In particular, if the dimension of
such a system is small, an offline explicit MPC control law
can be obtained multi-parametric (mixed-integer) linear
or quadratic programming (Bemporad et al. (2002)).

Nowadays, in the era of “Big Data”, the challenges for
MPC are how to solve the optimization problem online for
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large-scale systems and how to handle the nonlinearities
in the systems’ dynamics and constraints (Mayne (2014)).

For large scale systems, various decomposable convex op-
timization techniques have been tailored for distributed
MPC to solve optimization problem with separable and
parallelizable structure. The idea is to break the problem
into a bunch of subproblems that can be managed, solve
the subproblems locally and communicate cooperatively
(see, for instance, Camponogara et al. (2002); Christofides
et al. (2013); Stewart et al. (2010); Scattolini (2009) and
the references therein). Existing distributed optimization
algorithms can be classified into two categories: one class is
dual decomposition with proximal gradient descent meth-
ods (Bertsekas (1999); Boyd et al. (2010)) and the other
is to apply second order Newton type methods (Wei et al.
(2013)). For the first category, dual decomposition with
first order gradient based methods and alternating direc-
tion methods are the most commonly used optimization
algorithms. In Giselsson et al. (2013), the distributed MPC
controller is designed based on dual decomposition and its
dual problem can be solved in parallel with accelerated
gradient method, which guarantees a O(k%) convergence
rate, and the stopping condition was proposed in Giselsson
and Rantzer (2013) with some suboptimal performance.
The result of distributed MPC via ADMM algorithm was
presented in Summers and Lygeros (2012), Farokhi et al.
(2013) and Lu (2014). In contrast to the first two papers
which uses CVX solver to solve the ADMM update steps,
Lu (2014) employs Riccati recursion for the main steps
of ADMM iterations. In addition, Lu (2014) also shows
linear convergence rate satisfaction for the linear quadratic
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MPC setup with polyhedra constraints. In Pu et al. (2014),
the authors propose an inexact fast alternating minimiza-
tion algorithm (FAMA) for distributed model predictive
control. For the second order Newton type methods, some
distributed Newton algorithms can be found in Wei et al.
(2013) for network utility optimization problem and in Liu
et al. (2013) for cross-layer network optimization. These
results need a block diagonal structure of the Hessian
matrix in order to solve the Newton systems for each
subsystem in a distributed way.

For nonlinear programming (NLP), sequential quadratic
programming (SQP) methods and interior point methods
are two effective and promising approaches (Nocedal and
Wright (2006)). SQP methods solve a sequence of convex
quadratic approximation of the original nonlinear, possibly
non-convex problem iteratively. Interior point methods
approximate a path that approaches the solution. For
distributed nonlinear optimization, these two types of
methods have also been studied for many years. In Necoara
et al. (2009), the authors combine sequential convex pro-
gramming (SCP) and some smoothing techniques to solve
the nonlinear optimal control problem for large-scale net-
worked control systems. In Necoara and J. Suykens (2009),
the authors develope an interior point Lagrangian decom-
position method for separable convex optimization prob-
lem with application to distributed MPC. Especially, in
Annergren et al. (2015), the authors propose a distributed
primal-dual interior-point method for loosely coupled con-
vex optimization problems which is similar to Necoara
and J. Suykens (2009) and employ ADMM to solve the
distributed Newton Equations. Motivated by these results,
this paper presents a sequential quadratic programming
method combined with ADMM for separable nonlinear
model predictive control problem, and the problem setup
maybe non-convex. By introducing the so-called consensus
constraints, we can decouple the couplings among the
subsystems. In order to enforce the convergence, this paper
also proposes a distributed line search method with local
merit functions.

The organization of the paper is as follows. In Section
2, we provide the notations and the separable nonlinear
MPC setup that will be dealt with in this paper. In Section
3, sequential quadratic programming method is reviewed
for the nonlinear optimization problem with equality and
inequality constraints. Section 4 describes ADMM update
procedures for separable convex optimization problem.
Section 5 presents the combined SQP and ADMM algo-
rithm with distributed line search strategy for nonlinear
large-scale MPC problems. Section 6 concludes the paper.

2. PROBLEM FORMULATION

Consider a discrete-time nonlinear system with a non-
overlapping partition of M subsystems S;, i = 1,..., M.
The subsystems are connected with a fixed undlrected
graph G = (V,€), where V = {1,..., M} denotes the
subsystem nodes and £ C V x V is the edge set that
specifies pairs of connected nodes, and (i,5) € £ means
subsystems S; and S; are neighbors. Denote N; = {i} U
{j | G,j) € &} the index of subsystem S; and all its
neighbors.

Let i € R™ denote the state of subsystem &;, i.e.

Tr = [(xlls)Ta (xi)T? ) (xéW)T]T
with Ef\il n; = n. Each subsystem S; has its own input
vector uj, € R™?,

wp = [(u)™, (W)™ (u)*]E,
with Z —_;m; = m. The dynamics for subsystem S; can
be expressed as

zy = [, ul; 5 € N), i=1,...,M. (1)
The state and control vector of subsystems S;’s, i =
1,..., M satisfy local, possibly non-convex constraints

)

-
(EO—.’EZ',

ry e Xl €U, i=1,..., M.
The global constraint sets for the state and input are
defined as

X=X!x...xXM U=U'x-..-xUM.

For each subsystem Si, the local objective function is

Z (2}, ut) +€f( )-

k=

Consider the nonlinear distributed model predictive con-
trol (MPC) setup,

mlnz (Z O (xh ul) +€f(xN)> (2)

st ahg = fi(xl,uli €NY),  xh =7, (2.1)
#ieXl, k=0,1,...,N—1, (2.2)
up €U, k=0,1,...,N -1 (2.3)
ol € X} (2.4)

2.1 Separable Nonlinear MPC Formulation for Distributed
Systems

For the distributed MPC problem (2), the vector vari-
ables of subsystem S; are x' = [(z})7,...,(z%)"]",
u' = [(u)",..., (uy_;)"]". We denote the stacked
vectors of state and control vector variables of subsys-
tem S; and its nelghbors by xa; and uN, which sat-
isfy constraints xp;, € XV and uy, € UVNi. Set v =
[(x)7, ..., (xM), (ul)T, oo (@M as the collection of
global variable, and z' = [xx;,, ux;] as the local variables
which collect the variables that the dynamics of subsystem
S; in (1) is involved with. The corresponding constraints
on z is denoted as ZNi = XNi x UV:,

The nonlinear MPC setup (2) can be equivalently formu-
lated as a separable optimization problem

M
min Z ¢'(z"), (3)

=1
st. hi(z)=0, i=1,...,M, (3.1)
c(z') <0, i=1,...,M, (3.2)
zi=FEyv, i=1,...,M, (3.3)

where ¢! is the local objective function for the local
variable z!. The constraints (3.1) and (3.2) include the
dynamical constraint (2.1) and the constraint ZV¢, the
constraint (3.3) is the so-called consensus constraints,
and F;’s decouple the local variable sets from the global
variable v.
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