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Abstract: A robust model predictive controller is proposed for constrained linear systems with
unknown disturbances that are subject to state and input dependent piecewise affine bounds.
The formulation encompasses problems involving model uncertainty arising from unknown
system parameters and linearisation errors. We propose a computationally efficient method for
the online optimization of a receding horizon min-max cost over the class of feedback strategies
subject robust constraint satisfaction and provide an illustrative numerical example.
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1. INTRODUCTION

Robust model predictive control (RMPC) algorithms com-
pute a control law that optimises a predicted performance
criterion subject to state and control constraints for all
possible realisations of model uncertainty. Witsenhausen
(1968) proposes to formulate the RMPC problem as a
game in which the adversary tries to maximise the effect of
model uncertainty on the cost and the controller chooses
its strategy to minimise the cost for the worst case system
parameters and disturbances. This formulation is widely
accepted in the RMPC literature (e.g. Bemporad and
Morari, 1999; Bemporad et al., 2003; Lee and Yu, 1997).
The predicted control law may be an open-loop policy,
in which case the controller chooses its strategy for the
whole prediction horizon before the adversary decides its
strategy, or a closed-loop policy in which the horizon is
split into stages and the actions of controller and adversary
at each stage depend on the outcome of the previous
stage). Theoretical properties of these controllers are well
understood (e.g. Mayne et al., 2000). However, the numeri-
cal computation of robust model predictive controllers still
poses a challenge and only few tractable solutions have
been proposed.

Various strategies have been proposed to solve RMPC
problems for linear systems subject to linear state and
input constraints, with model uncertainty in the form of
bounded additive disturbances and/or multiplicative pa-
rameters. For the case of unknown additive disturbances,
Scokaert and Mayne (1998) propose a scenario-based ap-
proach to solve a sequence of min-max problems online,
however the computational complexity of this approach
grows exponentially with the length of the horizon. A
parametrised algorithm was proposed by Rakovic et al.
(2012) which reduces the RMPC problem to a single
linear program to be solved online, but although this is
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a closed loop strategy the parametrisation is in general
suboptimal. Explicit RMPC algorithms optimise the worst
case predicted performance for each admissible model state
offline and use results from multi-parametric programming
to parametrise the optimal control law as a piecewise affine
function of the state (e.g. Bemporad et al., 2003; Diehl
and Bjornberg, 2004). However, this requires extensive
offline computation and becomes inefficient for a high-
dimensional state space. An alternative approach that sim-
ilarly exploits the piecewise affine structure of the solution,
but with less redundancy, was proposed by Buerger et al.
(2011) and extended in Buerger et al. (2013). In this work
an active set solver is designed to solve a sequence of min-
max problems explicitly online.

In almost all existing methods for RMPC, the model
disturbances are assumed to be confined to sets that are
constant, i.e. independent of the system state and control
inputs. Disturbances that depend on model states (or con-
trol inputs) are considered in Kuntsevich and Pshenichnyi
(1996); Rakovic et al. (2006). However general formula-
tions of state and input dependence can result in non-
convex constraints (Rakovic et al., 2006). To avoid this
we make use of recent algorithmic advances (Schaich and
Cannon, 2015) that enable a class of polytopic disturbance
sets that depend affinely on the system state and con-
trol input to be handled using convex constraints. This
provides an algorithmic and analytical framework which
is used in the current paper to embed affine state and
input dependent disturbance constraints into the frame-
work of the active set RMPC solver framework proposed
by Buerger et al. (2011). Disturbances that belong to sets
which depend on model states and inputs can account for
multiplicative model uncertainty as well as linearisation
errors, and the approach of this paper is therefore able to
handle linearisation errors in RMPC non-conservatively.

This paper is structured as follows: After describing the
control problem in Section 2 we summarise preliminary
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results which are necessary to formulate the considered
problem explicitly in Section 3. Section 4 discusses the
recursive solution for equality constrained min-max recur-
sions, one of the essential parts of the active set solver,
and this is applied to the min-max RMPC problem in
Section 5 for the case that the active set of constraints
is known. A line search to determine the active set of
constraints is described in Section 6 and bounds on the
computational complexity of the approach are discussed in
Section 7. An application of the proposed algorithm to an
example problem is presented in Section 8 and conclusions
are drawn in Section 9.

2. PROBLEM STATEMENT

We consider a computationally efficient method for solving
online min-max receding horizon control problems that
exploits the structure of multi-parametric programming
solutions. Our approach determines the optimal feedback
law without approximating the cost or the constraints of
the problem, and without making restrictive assumptions
on the parametrisation of control inputs. To make it
possible to obtain a closed form solution of the min-
max optimal control problem we assume a linear-quadratic
problem formulation. Thus we assume linear dynamics

r" = Az + Bu + Duw, (1)

where A, B, D are real matrices of appropriate dimension,
z,27 € X C R" denote the state and successor state
respectively, u € U = {u : Fou < 1Vi € T} C R?
is the control input and w € W(z,u) C R? is an
unknown disturbance input, Z¥ denotes the index set
of the constraint set U. The disturbance set W(z,u) is
assumed to have a known dependence on the values of =
and u, according to

W(z,u) ={w: Gw < H(z,u)}, (2)
where each element of H(z,u) is a convex, piecewise affine
function for all (z,u) € X x U. The control objective is
to minimize the worst case value, over all future model
uncertainty, of the cost
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where the subscript k£ denotes the realisation of a variable
at time k, ||;EH22 denotes the quadratic form 27 Qz, Q and
R are given positive definite matrices and v is a given
scalar weight that controls the I2-gain of the closed loop
system from the disturbance sequence to the state and
control sequences.

Given a prediction horizon of N steps over which the
predicted control law is to be optimized, we define the
min-max optimal control problem with m stages to go as

() = minma § (g + [ulf =27 w]*) + J5 -1 ()
| (40)

subject to
v" = Az + Bu + Dw (4b)
uel (4c)
w € W(x,u) (4d)
(z,u) € Zp, (4e)

form =1,...,N,with J;(z) = [|[z||%, . The stagewise state
and input constraints Z,, are defined recursively by

Zy={(z,u) :uel
N Az + Bu+ Dw € X1 Yw € W(z,u)}
X ={z:Juel, (z,u) € Z,}

(5a)
(5b)
(5¢)

with
Xg = X, (5d)

Thus the constraints (z,u) € Z,, ensure that the terminal
state, namely 2 at m = 1, is contained in X°*°. We define
X as the maximal robust positive invariant (MRPI) set
(Blanchini and Miani, 2007)), for the closed-loop system
governed by a given state feedback controller u = Kx:

X ={x: (A+BK)x+Dw € X*°Vw € W(z, Kz)}, (6)

and we define Py so that Jj(z) is the worst case value of
the cost (3) under v = Kz in the absence of constraints.
Recently Schaich and Cannon (2015) proposed an algo-
rithm to compute MRPI sets for linear systems subject
to state and input dependent disturbance constraints. In
this paper we combine this approach with the multistage
multi-parametric programming method of Buerger et al.
(2013) to derive an efficient algorithmic solution to the
online MPC optimization of (4a-e).

3. CONTROLLABLE SETS

In this section we summarise results on controllable sets
that allow the constraints of the problem (4) to be for-
mulated in a convenient way. The following result shows
that the MRPT set (6) associated with the pointwise poly-
topic set (2) is polytopic if H is elementwise convex and
piecewise affine. For a proof and detailed discussion of this
result we refer the reader to Schaich and Cannon (2015).

Theorem 1. (Schaich and Cannon (2015)). Let X C {x :
I'c < 1A -Tz < 1} be a polyhedral set, let the pair
(A+BK,T') be observable, and let W(z, Kx) be defined as
in (2) with an elementwise convex piecewise affine function
H(z, Kz) which is bounded for all finite 2. Then the MRPI
set X'*° is polytopic, i.e. it has the representation

Remark 2. The conditions of Theorem 1 require that
W(z,u) is polytopic for all finite (x,u), i.e. it must have a
convex hull representation W(z,u) = convi{wy(z,u)}, k €
{1,...,r} where each vertex, wy(z,u), is a piecewise affine
function of (z,u), i.e.

wy (2, u) = max{ Wy 1z + W' u + wg, 1,
Wiax + Wilsu + wy 2, . . . (8
where the maximisation is performed elementwise.

We now derive the representation of Z,, and X, as defined
in (5). According to Theorem 1 the MRPI set X is
polytopic and has the representation (7). Therefore the
recursion (5a) defines Z; as
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