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a  b  s  t  r  a  c  t

In  the last  few years,  the interest  in  the  development  of  new  pervasive  or  mobile  implementations  of air
quality multisensor  devices  has  significantly  grown.  New  application  opportunities  appeared  together
with  new  challenges  due  to  limitations  in dealing  with  rapid  pollutants  concentrations  transients  both
for  static  and  mobile  deployments.  In this  work,  we  propose  a Dynamic  Neural  Network  (DNN)  approach
to  the  stochastic  prediction  of  air pollutants  concentrations  by  means  of  chemical  multisensor  devices.
DNN  architectures  have  been  devised  and tested  in  order  to tackle  the  cross  sensitivities  issues  and
sensors  inherent  dynamic  limitations.  Testing  have  been  performed  using  an  on-field  recorded  dataset
from  a pervasive  deployment  in  Cambridge  (UK),  encompassing  several  weeks.  The  results  obtained  with
the dynamic  model  are  compared  with  the  response  of  the  static  neural  network  and  the performance
analysis  indicates  the  capability  of  the on-field  dynamic  multivariate  calibration  to ameliorate  the  static
calibration  approach  performance  in this  real world  air quality  monitoring  scenario.  Interestingly,  results
analysis  also  suggests  that the  improvements  are  more  significant  when  pollutants  concentration  changes
more rapidly.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Recently, new sensing technologies and systems for achieving
a truly pervasive air quality (AQ) monitoring capability in cities
are being developed [1]. The primary driver is actually the cur-
rent coarse grained and sparse AQ measuring mesh that is based
on costly and cumbersome conventional analyzers. These are chal-
lenged by the need for obtaining a detailed and representative map
of the true concentrations of pollutants in the city. As a matter of
fact, the current approach is clearly unable to cope with the local
complex chemical and fluid dynamic effects occurring in the urban
landscape. Emission of air pollutants is caused by different anthro-
pogenic processes which can be categorized into source groups
like car traffic, industry, power plants, and domestic fuel. Emit-
ted air pollutants are dispersed and diluted in the atmosphere [2].
Chemical reactions producing, for example, photochemical ozone,
occur frequently [3,4]. Dispersion and dilution of air pollutants
are strongly influenced by meteorological conditions, especially by
wind direction, wind speed, turbulence, and atmospheric stabil-
ity. Topographical characteristics and urban structures like street
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canyons, for example, have a significant influence on these mete-
orological parameters. Eventually, along with chemical reactions,
dispersion and dilution processes result in an ambient air pollution
distribution which shows concentrations of different substances
significantly varying with regard to time and space.

Low cost chemical multisensory devices seem a promising
answer to the needs; however their performances are hindered
by several issues including specificity and stability of transducers.
Actually, chemical microsensors devices are, in general, subjected
to interferent gases that either boost, or depress, their response,
to the target gas [5]. For this reason, any attempt to rely on a
monovariate calibration procedure neglecting interferents influ-
ence is prone to failure [6]. Information on interferent gases should
be exploited by calibration procedure in order to solve this issue.
Chemical microsensors response generally changes in time due to
several effects including poisoning and environmental variables
sensitivity [7]. As a consequence, long term stability is a signifi-
cant concern given the need to reduce maintenance burden on a
pervasive network of AQ analyzers.

Although the lab based calibration approach, pioneered in [38],
allows for fully controlling the range and the ratios of pollutant
concentrations to which the sensor array is subject, the exact repro-
duction of field atmosphere is actually precluded by its inherently
complex nature. The number of different pollutants and interfer-
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ents concentrations to consider, in order to cover the experimental
space and fully characterize sensors response, may  easily explode.
For example, in Ref. [39], Zhang et al., tried to adequately cover
possible RH and T variation ranges using twelve different value
combinations at different pollutant concentrations. Eventually,
they generated more than 100 samples while in lab calibrating their
multisensor device for single pollutant concentration estimation
(formaldehyde) in indoor air quality applications. The straightfor-
ward use of on-field recorded data may  allow solving this issue. On
the other hand the concentrations ranges, in this case, are out of the
researcher’s control. Moreover it could, in principle, reflects a local
situation limiting the use of the data for the deployment in different
locations. Nonetheless, multivariate calibration with on-field data
is being currently reported as an efficient tool [6,8].

Actually, machine learning (ML) is a promising approach to
obtain a multivariate calibration [8]. Flexibility of ML  tools can be
a decisive asset compared with parametric techniques that require
the assumption of a specific hard model form.

Non-linearity in a data set can be detected with graphical
methods but identification of its source is more challenging and
sometimes impossible. Thanks to their ability to learn and derive
input-output relationships from the presentation of a set of training
samples, ML  tools avoid the time-consuming and possibly expen-
sive task of hard model identification. Generalization property of
ML  tools, that is, the capability of a model to produce a valid esti-
mate of the correct output when a totally new input is presented,
is a further driver advocating its use with on field recorded data
[37]. However, a major drawback is the possibility to overfit cali-
bration data negatively affecting generalization capabilities. Most
machine learning can perform at least as well as any other tech-
nique in terms of prediction, but a major criticism remains their
black-box nature. Model interpretation for a Neural Network, for
example, is still considered much more complex than for PLS or
PCR models. This is due to the operations (summation and projec-
tion on transfer function) performed subsequently in the hidden
and output layer, that prevent one from deriving simple analytical
expressions between input and output variables.

The usually proposed methodologies, however, are trained to
produce instantaneous calibration that do not consider the typi-
cally slow and sometimes non-linear (in time) dynamic behavior
of chemical sensors [6,9]. In our specific scenario this means that
significant but relatively short pollution bursts, due for example
to moving car or trucks emissions, traffic light related stops, pas-
sage of plumes occurring in static deployments or plume crossing
by a mobile sensors, could be filtered out, masking the real mag-
nitude of the phenomena. This may, in turn, affects time average
indicators used for pollution evaluation. Of course these limita-
tions become extremely significant for mobile applications like
personal pollution exposition evaluation. In fact, mobile platforms,
as they navigate relatively to the source, may  cross pollutants
plume several times, experiencing sudden and rapid gas concentra-
tion transitions [10]. A rapid detection of the concentration changes
is hence paramount for personal exposure quantification.

In this view, rapid transient response analysis is extremely rele-
vant. In order to capture the information contained in the dynamics
of the gas sensors, artificial olfaction practitioners relies on a fixed,
predefined and controlled experimental protocol. Typically, before
and after sample presentation, the sensor array is exposed to a gas
reference (clean air) to capture the rising and decaying signal tran-
sients [5,11]. Then, the complete set of acquired time series, or a set
of features extracted from the time series [7,12–15,31] itself, is used
to train a calibration model [16,17]. In both case, such a calibration
methodology requires to capture the sensors signals over a mea-
surement time defined beforehand during a controlled variation
of the pollutants concentrations and environmental variables. As a
result, the model prediction for a new sample can only be provided

after such a measurement is complete. This process, however, is
extremely difficult to reproduce when operating in the field requir-
ing complex delivery systems. It is necessary to alternate the gas
sample with the reference baseline and the composition of the gas
samples has to remain constant, during the whole sample presenta-
tion. In open sampling systems the sensor array is exposed directly
to the environment with no measurement test chamber, making
the system sensitive to flow turbulence [18]. A method that is able
to provide continuous and accurate prediction according to the
present and past states of the sensor array would be better suited
for such applications [34–36]. Only a few works have explored
quantitative prediction algorithms for continuous gas concentra-
tion estimation with fast varying concentration inputs. Usually,
they were based on a regressor with tapped-delayed input to pro-
vide a finite and fixed memory to the system.

In particular, tapped-delay predictors have been explored with
linear (finite impulse response filters) and polynomial regressors
(Wiener regressors) (Refs. [19,33]), neural networks [20–22], or
support vector regressors (Refs. [21,32]).

In Ref. [19], Pardo et al., among the firsts, proposed and com-
pared different nonlinear inverse dynamic models of gas sensing
systems for quantitative measurements. With respect to our sce-
nario, a measurement chamber is used to obtain the gas sensor
readings, which implicitly modifies the dynamic properties of the
measured signals, and the acquisition frequency is too low (one
sample per minute) to reflect the fast and highly dynamic changes
of the gas concentration in open sampling systems. Anyway, we
couldn’t find any work based on the use of faster on field analyzer.

In Ref. [16], Muezzinoglu et al. proposed an approach to accel-
erate the odor processing using transient features. Recording the
response of metal-oxide sensors array, subjected to a specific ana-
lyte in a constant flow, they computed the correlation among a
transient features and the steady-state resistance. This correlation
was used to accelerate standard quantification and classification of
analytes.

Again, in Ref. [23], the group of D’Amico and Marco proposed
a so-called ARMA (Auto Regressive Moving Average) system and
multi-exponential models, for reducing the time necessary to cal-
ibrate a sensor array, taking into account the behavior of a metal
oxide (MOX) semiconductor gas sensor. A dynamic model based on
multi-exponential decays allowing a net reduction of the calibra-
tion time is introduced and discussed. Nevertheless, since the focus
is on the calibration of MOX  sensors, the dynamic models are only
applied to the rise transient signals recorded in Closed Sampling
Systems over long time periods (over 800 s). Moving average and
Linear system model identification approaches are compared by
Vembu et al. with Support Vector Machines using specific devised
time series kernels [42]. Tests have been executed by recording
temperature optimized MOX  responses in a simulated wind tun-
nel facility. Results highlighted the performance advantage of the
proposed approach.

De Vito et al. in Ref. [21], proposed a dynamic calibration based
on a tapped delay NN architecture operating on instantaneous and
past sensor response samples. In their experimental settings, train-
ing samples were obtained by rapidly changing concentrations
of multiple gases and environmental conditions. Tests were con-
ducted in the same lab settings confirming the capability of such
architectures in improving quantification performance in presence
of a slow sensors dynamics. However, in such an architectures the
memory is fixed by the length of the TD line (or duration of the
delay) and has to be optimized in calibration phase. The effective-
ness of this methodology in real world setting where duration and
dynamic characteristics of transients are impredictable is at least
controversial and has never been proved.

In Refs. [24,25], the authors proposed the use of reservoir com-
puting (RC) algorithms to overcome the slow temporal dynamics of
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