Accepted Manuscript

Title: An innovative gas sensor incorporating ZnO–CuO nanoflakes in planar MEMS technology

Author: Bhagaban Behera Sudhir Chandra

PII: S0925-4005(16)30079-X

DOI: http://dx.doi.org/doi:10.1016/j.snb.2016.01.079

Reference: SNB 19588

To appear in: Sensors and Actuators B

Received date: 17-6-2015 Revised date: 30-12-2015 Accepted date: 18-1-2016

Please cite this article as: Bhagaban Behera, Sudhir Chandra, An innovative gas sensor incorporating ZnOndashCuO nanoflakes in planar MEMS technology, Sensors and Actuators B: Chemical http://dx.doi.org/10.1016/j.snb.2016.01.079

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

An innovative gas sensor incorporating ZnO-CuO nanoflakes in

planar MEMS technology

Bhagaban Behera and Sudhir Chandra*

Centre for Applied Research in Electronics

Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, INDIA

*E-mail: schandra@care.iitd.ernet.in

Abstract

In this work, a simple and cost effective MEMS based gas sensor incorporating ZnO-CuO

nanoflakes is presented. For ZnO-CuO nanoflakes synthesis, brass film was deposited on

oxidized Si substrate by radio frequency (RF) diode sputtering and subsequently subjected to

thermal oxidation process. The oxidized samples were characterized using SEM, XRD, XPS and

Raman spectroscopy. For the fabrication of the complete sensor, planar MEMS technology with

integrated microheater was adopted. This technology uses sputter deposited and recessed SiO₂

platform in Si substrate for providing thermal isolation to reduce the power consumption of Ni

microheater and prevents heat spreading from heater area. The microheater performance was

simulated and experimentally verified. The sensor was tested for different toxic gases and

volatile organic compounds (VOCs) over range of operating temperatures and concentrations for

optimal sensing performances. The sensing results revealed that the sensor had highest response

for acetone vapours over other gases. Also, it showed reproducible and stable performance.

Key words: ZnO-CuO nanoflakes, MEMS, gas sensor

Introduction

Gas sensors are extremely useful in a variety of applications such as environment monitoring,

industrial manufacturing units, agriculture, defense, human health and safety. The desired gas

sensor should ideally be a low cost device, small in size having high sensitivity and low power

consumption. Use of metal oxide nanostructures such as nanowires, nanotubes, nanorods,

1

Download English Version:

https://daneshyari.com/en/article/7144230

Download Persian Version:

https://daneshyari.com/article/7144230

<u>Daneshyari.com</u>