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a  b  s  t  r  a  c  t

We  reconsider  the  effects  of nonuniform  mass  loading  in gravimetric  chemical  or  biological  sensors  by
applying  a mode-matching  approach.  The  approach  yields  an eigenvalue  equation  which  is solved  numer-
ically.  The  results  reveal  how  an  increasing  concentration  of  the  mass  deposited  on  top  of a microacoustic
resonator  leads  to a frequency  shift  different  from  that  predicted  by  the Sauerbrey  equation  valid  for  uni-
form mass  loading.  Depending  on  the  mode  type  and  the mass  distribution,  a nonuniform  mass  loading
can  lead  to a frequency  shift  higher  or  lower  than  that  of  the  uniform  loading  case.  We then  derive a
point-mass  solution  which  can  be  considered  exact  in all  practical  applications  and  compare  it to avail-
able  data  in  the  literature.  The point-mass  solution  is used  to obtain  a  closed  formula  for  the  frequency
shift  produced  by  an  arbitrary  nonuniform  mass  loading,  and  some  consequences  of  this  formula  are
discussed.  Altogether,  the  model  presented  is quite  simple  and  yet  allows  one to  judge  the  effects  of
nonuniform  mass  loading  in gravimetric  sensors  very  efficiently.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

It has been known for decades that the resonance frequency
of microacoustic resonators decreases when the resonator adsorbs
mass on its surface. The principle has been used in chemical sen-
sors such as quartz crystal microbalances (QCM or QMB), surface
acoustic wave (SAW) resonators, and thin-film bulk acoustic wave
resonators (FBAR). In these devices, a miniaturized piezoelectric
resonator is coated with a thin layer that specifically incorporates
the analyte molecules to be detected [1,2].

It was shown by Sauerbrey in 1959 that the change �f of the res-
onance frequency is directly proportional to the mass increase m in
the sensitive coating due to the incorporation of analyte molecules
in the layer [3, Eq. (4)]:

�f

f
= −m

M
. (1)

Here, M is the resonating mass in the quiescent state (no analyte
molecules incorporated in the sensor layer). The quiescent reso-
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nance frequency f mainly depends on the materials and acoustic
wave types involved and on the transducer geometry.

The validity of the Sauerbrey Eq. (1) hinges on a number of
assumptions:

• The equation only describes the effects of mass loading and
neglects electrical loading, elastic loading, viscous loading, etc.

• It assumes that the mass distribution after analyte incorporation
is uniform.

• It assumes that the acoustic wave attenuation changes only neg-
ligibly upon molecule accretion.

• It assumes an acoustically thin layer with h « �, where � is the
wavelength of the standing acoustic wave [4].

• It is a static model that only describes the steady-state response.
No dynamic effects caused by chemical reactions or diffusion are
considered [5,6].

In this contribution, we  are concerned with the implications
of the second assumption or rather its relaxation. The effects of
nonuniform mass loading have drawn little attention so far in
relation to the vast literature on chemical or biological applica-
tions of microacoustic sensors. However, this nonuniformity can be
expected to be important in biosensors when larger cells, modeled
as point masses, accrete on the sensor surface.

Sauerbrey himself only considered the fundamental mode of
AT- or BT-cut quartzes and experimentally investigated the spatial
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dependence of the displacement amplitude by localized deposi-
tion of test masses; he did not give a functional expression for the
influence of the mass location, though [3].

Van der Steen and coworkers investigated the effect of mass
adsorption outside the sensitive electrode area of a QCM, but did
not consider a nonuniform (e.g., partial) loading of the electrode
area [7].

Dybwad used a simple analogon – two coupled mechanical res-
onators with lumped masses – to show that the loose adhesion of
a point mass lying on a piezoelectric resonator can result in a fre-
quency increase [8]. This coupled-resonator effect can indeed be
observed for weekly bonded small particles, but has nothing to do
with gravimetric measurement [9].

Later, Vig and Ballato commented with much insight, but only
verbally on the effects of nonuniform mass loading and did not give
any quantitative details [10].

Today, we are able to investigate the effects of nonunifom mass
loading by numerical computations with simultaneous consider-
ation of realistic geometries and anisotropic material parameters.
This was shown, for example, by Liu et al. [11,12]. However, such
full-fledged solution procedures usually do not further one’s basic
insight into the existing parameter dependencies. In other words:
one needs a simpler model which, nevertheless, covers the domi-
nant phenomena.

Dultsev and Kolosovsky undertook such a model simplification
for the case of a point-mass loading of a QCM and concluded that
the sensor should respond with a frequency increase [13]. This is
surprising as a successive accretion of point masses would then lead
to a sequence of positive frequency shifts. It is hardly explainable
how the limit of this process, corresponding to an (almost) uniform
mass loading, could produce the negative frequency shift required
by the Sauerbrey Eq. (1).

The point is not whether microacoustic chemical sensors can
respond with a frequency increase – in fact, resonator coupling or
elastic loading can lead to such an increase [3,8,9,14] –, but whether
they can do so under some exotic form of nonuniform mass loading.

It is the goal of the present contribution to clarify the funda-
mental effects of the nonuniformity of the mass distribution on
the surface of a gravimetric chemical sensor and to reveal the con-
nection between the point-mass loading and the distributed mass
loading cases. To this end, we will consider the one-dimensional
QCM model presented in Ref. [13]. The simplicity of the model
notwithstanding, it will predict the key effects of the nonuniform
mass loading and thus enables one to better guide full-fledged sim-
ulation efforts based on two- or three-dimensional numerical (e.g.,
finite-element, or FE) codes. Most numerical codes would fail for
very localized (Dirac-like) mass loading anyway and thus cannot be
used to investigate this most fundamental of all cases. For instance,
Yong et al. [15] used FE calculations to investigate local-mass effects
in AT-cut resonators, but did not concentrate the mass to, in linear
terms, less than 10% of the resonator diameter.

The 1-d (strip) model of a QCM is shown in Fig. 1. The length L
and width w can be chosen such as to make the model predictions
match the characteristics of the actual resonator. The length L is
very near the electrode diameter as the displacement vibration in
the resonator is almost limited to the electrode region (also see
Section 2.2 below).

2. Mode matching approach to the problem of nonuniform
mass loading

2.1. Basic (uniform) resonator

Assume for the time being that the strip is uniform. We use a
Cartesian coordinate system in which the strip length and width are

Fig. 1. QCM and equivalent 1-d model. (a) Quartz resonator with typical gold
electrode. Another electrode sits on the backside. The electric field between the
electrodes leads to mechanical shear vibrations essentially limited to the central
area bounded by the dotted lines. (b) One-dimensional strip model equivalent to
the vibrating region of (a).

respectively aligned with the x- and y-axis. Consequently, the sur-
face normal points to the z-direction. We  are looking for a particle
displacement of the form

u(x, t) = Re{U(x) · ejωt}. (2)

(Note that [13] uses a time-dependence of e−jωt.) The
position-dependent phasor U(x) must satisfy the one-dimensional
Helmholtz Eq. [(13), Eq. (3); [16] [p. 112], Eqs. (22) and (3)]

d2U

dx2
+ k2U(x) = 0 (3)

with

k(ω) = �

L

ω

ω1
(3a)

and

ω1 = �

L

√
whE

2��0(1 − �2)
. (3b)

Here, L, w,  and h are the strip length, width, and height, respectively.
E and � respectively denote Young’s modulus and Poisson’s ratio
of the strip material, and ��0 = M/L is the mass per unit length
or linear mass density (in x-direction) of the strip (M is the total
strip mass). For the uniform resonator considered, �� is a constant
independent of x.

The particle displacement associated with the standing wave in
a QCM decays fast outside the electrode region [3][3(p. 214), 13, 12].
At the QCM edge and, thus, at the ends of the equivalent strip, it will
be zero or very nearly zero, so that Eq. (3) must be solved under the
boundary conditions U(0) = U(L) = 0U(0) = U(L) = 0. There exist
infinitely many solutions, the resonance modes. The resonance
angular frequency of the n-th mode is determined by knL = n�.  This
leads to ωn = n × ω1(n = 1, 2, 3, ...). The associated particle displace-
ment is

Un(x) = An sin(knx) = An sin(n
�x

L
) (4)

with some constant An.
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