Accepted Manuscript

Title: A Fluorescent Bis-NBD Derivative of Calix[4]arene: Switchable Response to Ag⁺ and HCHO in Solution Phase

Author: Shaofei Zhang Hui Yang Ying Ma Yu Fang

PII: S0925-4005(15)30738-3

DOI: http://dx.doi.org/doi:10.1016/j.snb.2015.12.016

Reference: SNB 19417

To appear in: Sensors and Actuators B

Received date: 9-9-2015 Revised date: 8-12-2015 Accepted date: 9-12-2015

Please cite this article as: S. Zhang, H. Yang, Y. Ma, Y. Fang, A Fluorescent Bis-NBD Derivative of Calix[4]arene: Switchable Response to Ag⁺ and HCHO in Solution Phase, *Sensors and Actuators B: Chemical* (2015), http://dx.doi.org/10.1016/j.snb.2015.12.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A Fluorescent Bis-NBD Derivative of Calix[4]arene: Switchable

Response to Ag⁺ and HCHO in Solution Phase

Shaofei Zhang¹, Hui Yang¹, Ying Ma² and Yu Fang^{1, 2*}

^{1,2}Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education),

¹School of Materials Science and Engineering,

²School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China

Abstract:

A bis-nitrobenzoxadiazole (NBD) derivative of calix[4]arene (L₁) and a control

compound (L₂), mono-NBD derivative of the calixarene were designed and prepared

via click chemistry. Fluorescence studies demonstrated that L₁ as created can function

as a switch with the presence of Ag⁺ in THF, of which the free state of L₁ emits at

~527 nm, but the binding state at 576 nm. Based upon this discovery, L₁ was studied

as a chemo-sensor of Ag^+ in a mixture solvent of THF and H_2O with a detection limit

(DL) of ~6.2×10⁻⁷ mol/L. Presence of other commonly found metal ions shows little

effect upon the determination. Moreover, the L₁ in the Ag⁺-L₁ complex could be fully

released with introduction of HCHO, a bases for the sensitive and selective detection

of the toxic chemical. The DL of this test is 6.6×10^{-7} mol/L. Interestingly, binding and

releasing of the fluorescent ligand could be repeated for at least 5 times. Furthermore,

both sensing could be performed in a visualized manner. It is believed that the

fluorescent compound as created should have a potential to find real-life applications.

Keywords: NBD; Calix[4]arene; Ag⁺; HCHO; Fluorescent Switch

* Corresponding author, E-mail: yfang@snnu.edu.cn (Yu Fang); Tel: 0086-29-81530786; Fax:

0086-29-81530787.

1

Download English Version:

https://daneshyari.com/en/article/7144542

Download Persian Version:

https://daneshyari.com/article/7144542

<u>Daneshyari.com</u>