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a  b  s  t  r  a  c  t

Calibration  transfer  is attracting  more  and more  attention  in  the  field  of  electronic  noses  (e-noses).  It  aims
at making  the  prediction  model  trained  on  one  device  transferable  to other  devices,  which  is important
for  the  large-scale  deployment  of e-noses,  especially  when  the  cost  of  sample  collection  is high.  In this
paper,  the  transfer  ability  of  prediction  models  is improved  in two  steps.  First, windowed  piecewise  direct
standardization  (WPDS)  is used  to standardize  the  slave device,  i.e.  to transform  the  variables  from  the
slave  device  to match  the master  one.  Then,  data  from  the  master  device  are  used  to  develop  prediction
models  with  a novel  strategy  named  standardization  error  based  model  improvement  (SEMI).  Finally,  the
standardized  slave  data  can  be predicted  by  the  models  with  a better  accuracy.  The  proposed  WPDS  is a
generalization  of  the  widely  used  PDS  algorithm.  The  main  idea  of  SEMI  is  to make  the  trained  models
rely  more  on  variables  with  small  standardization  errors,  thus  less  sensitive  to the  inconsistency  of  the
devices.  It links the  standardization  step  and  the  prediction  step. To  evaluate  the  algorithms,  three  e-noses
specialized  for  breath  analysis  are  adopted  to collect  a  dataset,  which  contains  pure chemicals  and  breath
samples.  Experiments  show  that  WPDS  outperforms  previous  methods  in the  sense  of  standardization
error  and  prediction  accuracy;  SEMI  consistently  enhances  the  accuracy  of  the  master  model  applied
to  standardized  slave  data.  This  study  provides  effective  and extensible  methods  for  model  transfer  of
e-noses.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Electronic noses (e-noses) have become effective tools in many
areas, such as air quality monitoring [1,2], quality control of food
[3], and clinical analysis [4–7]. As increasing number of e-nose sys-
tems are being deployed in real-life applications, the problem of
calibration transfer is receiving more and more attention. When
two e-noses of the same model are used to measure the same gas
sample, their responses are usually not identical, which is due to the
variations in the manufacture of gas sensors, e-nose devices, and
the change in operational condition [8–10]. Therefore, if the predic-
tion model trained on one device (master device) is applied to other
devices (slave devices), there will be a degradation in accuracy.
However, it is often impractical to collect a set of gas samples with
each device to develop prediction models, especially when the cost
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of sample collection is high. This problem limits the popularization
of e-noses.

In order to make prediction models more applicable on slave
devices, researchers have presented various methods. Many of
them were originally proposed for spectroscopic data [11–13], but
can also be applied to e-noses. There are three typical ways of cali-
bration transfer [9,13]: transforming the data from the slave device
to match the master one; updating the prediction model of the
master device according to the slave data; and transforming the
predicted values of the slave data. In the field of e-nose, focuses
have been paid on the first way [8,9,14–17], since it is feasible in
most situations and easy to implement. This kind of methods are
also known as device standardization methods, which essentially
deal with a regression problem. Common categories include uni-
variate direct standardization (UDS), direct standardization (DS),
and piecewise direct standardization (PDS), which differ mainly
in the number of input variables. Regression algorithms such as
robust fitting [8,17], artificial neural network (ANN) [14,16], partial
least squares (PLS) [15], ordinary least square (OLS), and princi-
pal component regression (PCR) [12] have been studied. Besides,
in [18], standardization was performed on a subspace obtained by
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spectral regression. The method is better than DS when the number
of transfer samples is not less than 20. Inspired by the connectiv-
ity strategy of the olfactory bulb, Polese et al. [19] developed a
method with two self organizing map  (SOM) layers. The method
is effective for the calibration transfer of optical chemical sen-
sors. A calibration transfer approach based on alternating trilinear
decomposition (ATLD) was proposed in [20]. With the method, the
correction coefficients of multiple devices can be simultaneously
derived. But the method may  only be suitable when the changes
between devices are restricted to relative intensity.

In the widely used PDS method, one variable in the master
device is fitted by a group of variables around the corresponding
variable in the slave device. All input variables are given the same
weight [11]. However, it is intuitive that the variables nearer to the
corresponding variable should receive higher weights than the far-
ther ones. With the constraint of the feature weights, the regression
algorithm can be more stable. So we propose windowed piecewise
direct standardization (WPDS) in this paper, which allows us to
give different weights to the input variables by assigning different
penalty parameters. Experimental results show that WPDS outper-
forms UDS, PDS, and DS in the sense of validation standardization
error (the difference between standardized slave variables and the
master variables) and prediction accuracy.

In current literatures, device standardization and prediction
model training are always considered separately. One improves
the transfer ability of prediction models only by minimizing the
standardization error (SE). Nevertheless, we find that by incorpo-
rating some prior information obtained from standardization into
the prediction models, the prediction accuracy of the slave data can
also be enhanced. We  call the strategy standardization error based
model improvement (SEMI). The main idea is to make the models
rely more on stable variables which have smaller SE. The strategy
is combined with four popular prediction algorithms, i.e. logistic
regression, support vector machine, ridge regression, and support
vector regression. A weighted regularization term is included in the
objective function of each algorithm. We  impose larger penalty on
the variables with larger SE, so as to reduce the weights of these
variables in the trained model. Therefore, the model will be less
sensitive to these unstable variables and have better transfer ability.

Calibration transfer is crucial in the application of clinical anal-
ysis because samples from patients are rather hard to collect. In
our previous work, we introduced a portable e-nose specialized
for breath analysis [7]. It achieves disease screening and monitor-
ing through analyzing the biomarkers in breath, such as acetone,
hydrogen, and ammonia. Three e-noses of this model are adopted
to collect a gas sample dataset. Six pure chemical samples are
chosen as transfer samples for device standardization. Several
prediction tasks are designed to evaluate the transfer ability of
the models, including classification or regression of pure chemi-
cals or breath samples. Experimental results show that the SEMI
strategy consistently enhances the accuracy of the master model
applied to standardized slave data, especially when the inconsis-
tency between devices is large. Despite its efficacy, SEMI can be
easily extended to other prediction algorithms.

The paper is organized as follows. Section 2 describes WPDS
and SEMI in detail. Section 3 introduces the experimental config-
urations, including the e-nose module, dataset, and related data
analysis procedure. Section 4 presents the results of the calibra-
tion transfer experiments and provides some discussion. Section 5
concludes the paper.

2. Methods design

The calibration transfer process in the paper consists of two
steps: (1) developing standardization models with WPDS to stan-
dardize the data from the slave device; (2) developing prediction

models with the SEMI strategy to predict the standardized slave
data. This section will describe the steps in detail.

2.1. Windowed piecewise direct standardization (WPDS)

The objective of standardization is to model the difference
between two  devices and reduce it. To achieve this, a set of trans-
fer samples are measured on both devices. Then regression models
are built based on these transfer samples, so as to transform each
slave variable to match the corresponding master variable. Finally,
the prediction models trained on master data can be applied to the
standardized slave data and get a better accuracy.

In the simple univariate direct standardization (UDS) approach
[14], each master variable is fitted using the corresponding slave
variable and obtain two  coefficients: the slope and the intercept.
When the device variation is large, the univariate approach cannot
always model the master variables well. The direct standardization
(DS) proposed in [11] is a multivariate approach, which fits each
master variable using all slave variables. Some researchers [14]
reported that DS is better than UDS. However, when the number of
variables is large and the number of transfer samples is limited, DS
is prone to overfitting [13]. A trade-off approach between UDS and
DS is piecewise direct standardization (PDS) [11]. In PDS, each mas-
ter variable is related to only a subset of slave variables, for example,
neighboring wavelengths in near-infrared spectroscopy data [11].
PDS is one of the most widely used standardization approaches in
spectroscopic area. Its superiority is attributed to its local character
and multivariate nature [13]. But it has not been well explored for
e-nose data partially due to the feature extraction methods used
in previous studies. Commonly, only one steady response feature
is extracted from each sensor before standardization, hence there
are no “neighboring” variables. If multiple transient features are
extracted from each sensor’s response curve, neighboring variables
can be defined and PDS can be applied.

In PDS, the input variables are regarded as equally important.
Intuitively, when fitting the kth master variable, the kth slave vari-
able should be more important than the variables at some distance
from k. Therefore, we  propose a windowed PDS (WPDS) which gives
different weights to input variables by assigning different penalty
parameters in regression. The penalty parameters can be seen as a
window around k. By changing the size and shape of the window,
we can change the scope and weights of the input variables. Con-
sequently, the original PDS turns out to be a special case of WPDS
with a rectangular window (constant weights).

We  adopt generalized ridge regression as the algorithm inside
WPDS. Ridge regression [21,22] is a well-known shrinkage method
for linear regression. Suppose the problem is to find proper  ̌ and
ˇ0 in

y(i) = ˇTx(i) + ˇ0 + ε(i), i = 1, 2, . . .,  N, (1)

where y is the output variable; superscript (i) indicates the ith
sample; N is the number of samples; x(i) ∈ RM is a vector of M
input variables; M is the window length of WPDS.  ̌ = [ˇ1, ˇ2, . . .,
ˇM]T ∈ RM and ˇ0 ∈ R are the regression coefficients to be estimated;
and ε(i) ∈ R is an error term. The problem formulation of ridge
regression is

min
ˇ,ˇ0

⎧⎨
⎩
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2 + �
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⎫⎬
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The second term is a regularization term, which imposes a penalty
on the coefficients’ size. It forces the coefficients to shrink toward
zero. � ≥ 0 is a parameter controlling the amount of shrinkage. The
larger �, the greater the shrinkage. Note that the intercept ˇ0 is not
included in the regularization term [22].
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