ELSEVIER

Contents lists available at ScienceDirect

Sensors and Actuators B: Chemical

journal homepage: www.elsevier.com/locate/snb

Flower-like Fe₂O₃@MoS₂ nanocomposite decorated glassy carbon electrode for the determination of nitrite

Honggui Wang*, Peng Chen, Fangfang Wen, Ying Zhu, Ya Zhang*

Jiangsu Key Laboratory of Environmental Material and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China

ARTICLE INFO

Article history: Received 4 March 2015 Received in revised form 25 May 2015 Accepted 7 June 2015 Available online 16 June 2015

Keywords: Fe₂O₃ MoS₂ Nitrite Sensor Electrocatalysis

ABSTRACT

A novel ferric oxide/molybdenum sulfide ($Fe_2O_3@MoS_2$) modified glassy carbon electrode (GCE) was fabricated by drop casting $Fe_2O_3@MoS_2$ and Nafion suspension onto the surface of GCE. Scanning electron microscopy (SEM) image indicates the $Fe_2O_3@MoS_2$ has a flower-like nanostructure. Both cyclic voltammetry (CV) and linear sweep voltammetry (LSV) results show the $Fe_2O_3@MoS_2$ modified GCE exhibits excellent electrochemical activity in a 0.1 M phosphate buffered saline (PBS) compared to the Fe_2O_3 and MoS_2 modified GCE. CV results also show the $Fe_2O_3@MoS_2$ has excellent electrocatalytic behavior to nitrite in a pH 4.0 PBS. The amperometric response result indicates the $Fe_2O_3@MoS_2$ modified GCE can be used to determine nitrite concentration in a wide linear range of 2.0 and 6730 μ M with a detection limit of 1.0 μ M.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nitrite, widely used in our daily life as food additive, fertilizing agents and corrosion inhibitor, is recognized as an alarming pollutant to the environment and human health [1]. The excessive ingestion of nitrites via the dietary intake has potential toxic and carcinogenic effects [2]. The World Health Organization (WHO) has reported that the fatal dose of nitrite ingestion is between 8.7 μM and 28.3 μM depending on body weight [3]. Therefore, accurate, rapid, and economical determination of nitrite has attracted much attention. The electrochemical approach is considered to be an environmentally friendly method because no additional chemical loading is required. Besides, the electrochemical techniques are rapid, highly selective and sensitive.

Generally, the electrochemical methods are based on either oxidation or reduction of nitrite at different electrodes. Nanomaterials, including oxides [4,5], graphene [2,6], noble metals [2,6–8] and conducting polymer-based composites [9] have been exploited as active electrocatalysts for nitrite detection. Although the electrochemical determination of nitrite has got the successful development, an electrochemical sensor with better properties, such as easy manufacture, low price, wider operational potential

window, renewable surface, and environmentally friendly, is still a challenge.

 α -Iron oxide (α -Fe₂O₃) nanostructured materials have long been of scientific and technological interest due to their magnetic properties, low toxicity, and biocompatibility in physiological environments [10-12]. It has been used in various fields, such as magnetic resonance imaging (MRI), magnetically assisted drug delivery, anode material, wave adsorption and information storage [12–15]. Recently, Fe₂O₃ was tentatively explored as an electrocatalyst and found potential activity toward glucose [16], hydrogen peroxide [17], and reduced nicotinamide cofactors [18]. As we know, 2D or 3D superstructure will provide more surface areas and active reaction sites. Therefore, 2D or 3D structure has been receiving increasing interest [19–21]. Various 3D α -Fe₂O₃ structures, such as flower-like [22], chestnut-like [13] and urchin-like [14], have been successfully synthesized via different methods. However, $2D/3D \alpha$ -Fe₂O₃ nanostructured materials based sensors are still challenge.

 MoS_2 , with a 2D layered structure, has attracted much attention in photocatalysis [23], lithium ion batteries [24] and optoelectronic devices [25] due to its excellent electronic and optical properties. Recent researches show that MoS_2 is an exciting Hydrogen evolution reaction (HER) catalyst that exhibits promising HER activity in crystalline or amorphous materials and molecular mimics [26–28]. However, to the best of our knowledge no MoS_2 composite modified glassy carbon electrodes (GCEs) have yet been reported for nitrite determination. Herein, we fabricated a novel flower-like

^{*} Corresponding authors. Tel.: +86 514 87979528. *E-mail addresses*: wanghg@yzu.edu.cn (H. Wang), zhangya@yzu.edu.cn (Y. Zhang).

Fe₂O₃@MoS₂ modified GCE; the Fe₂O₃@MoS₂ nanocomposite has excellent electrochemical activity in a pH 4.0 PBS and enhanced electrocatalytic performance on nitrite oxidation.

2. Experimental

2.1. Synthesis of composite material

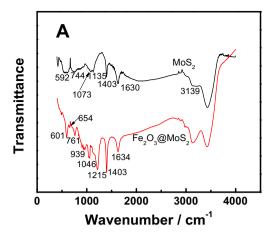
2.1.1. Synthesis of flower-like Fe₂O₃

All the reagents were of analytical grade and used as received without further treatment. Fe₂O₃ was prepared via a hydrothermal method as reported previously [21]. To prepare Fe₂O₃ catalyst, solutions 1 and 2 were prepared by dissolving 8 mmol FeSO₄·7H₂O and 1.6 mmol NaClO₃ in 15 mL and 16 mL deionized water, respectively. Next, Solution 2 was added dropwise into Solution 1 under magnetic stir until a primrose yellow transparent solution was obtained (Solution 3). Solution 3 was then transferred into a Teflonlined autoclave and maintained at 180 °C for 12 h. After cooling to room temperature naturally, the precipitates were collected by powerful magnet, thoroughly washed with ultrapure water and ethanol three times each, and dried in an oven at 60 °C for 10 h.

2.1.2. Synthesis of MoS₂ and Fe₂O₃@MoS₂

In a typical synthesis of Fe $_2$ O $_3$ @MoS $_2$, 1 mmol of Na $_2$ MoO $_4$ ·2H $_2$ O and 5 mmol of thiourea were dissolved in 60 mL of distilled water, and then 0.5 g of the prepared Fe $_2$ O $_3$ were added into the solution. Next, the homogeneous solution was transferred into a 100 mL Teflon-lined autoclave and held at 200 °C for 20 h. After that, the black precipitate was collected by centrifugation, washed three times with distilled water and ethanol, and then dried in an oven at 80 °C for 12 h. As a control experiment, MoS $_2$ nanosheets were prepared under the same conditions without adding Fe $_2$ O $_3$.

2.2. Preparation of Fe_2O_3 , MoS_2 and Fe_2O_3 @ MoS_2 nanocomposite modified electrode


Prior to modification, a glassy carbon electrode (GCE) was polished with alumina slurry of 0.5 μM on polishing cloth with water and then thoroughly rinsed with water and sonicated in a DI water bath for 10 min before use. For preparation of Fe₂O₃, MoS₂ and flower-like Fe₂O₃@MoS₂ modified electrodes, 4 mg samples and 80 μL Nafion (5 wt%) were dispersed in 0.8 mL DI water and 0.2 mL ethanol by ultrasonication for 30 min to obtain a homogeneous suspension (4.0 mg mL $^{-1}$). Then, certain amount of the suspension was dropped onto the surface of GCE and dried at room temperature.

2.3. Electrochemical properties

All electrochemical experiments were performed in the electrolytic cell consisted of a glassy carbon (GC) or a modified GC working electrode (3 mm diameter, CHI), a platinum wire counter electrode and a saturated calomel reference electrode (SCE) on a Model CHI 660 E electrochemical workstation. All potentials were referred to a SCE. The pH values of the solutions were determined with a PHS-3 C pH meter.

2.4. Characterization

Fourier transform infrared spectroscopy (FT-IR) spectra of the samples were measured on a Cary 610/670 microscope (Varian, US). Scanning electron microscopy (SEM) was examined on a field-emission scanning electron microanalyzer (Hitachi S-4800, Japan). The electron spin resonance (ESR) measurements were carried out using a Bruker A300 spectrometer operated in X-band (9.863 GHz). X-ray photoelectron spectroscopy (XPS)

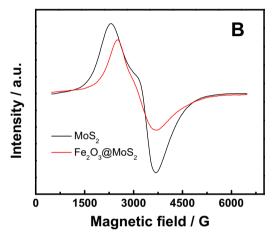


Fig. 1. (A) FTIR and (B) ESR spectra of MoS₂ and Fe₂O₃@MoS₂.

measurements were carried out with an ESCALAB 250 Xi photoelectron spectrometer using Al K α radiation (Thermo-Fisher Scientific, US).

3. Results and discussion

3.1. FT-IR and ESR spectra of MoS₂ and Fe₂O₃@MoS₂

The FT-IR spectra of MoS₂ and Fe₂O₃@MoS₂ composite are shown in Fig. 1A. The peaks appear at about 3139 and 1403 cm⁻¹ correspond to the stretching vibration and in-plane bending vibration of O-H, respectively [29]. The bands at about 1630 and 600 cm⁻¹ are attributed to the in-plane bending vibration of OH⁻ group and γ_{as} Mo-S vibration, respectively [7,29]. In the spectrum of Fe₂O₃@MoS₂, new peaks observed at 939, 654 and 601 cm⁻¹ are assigned to γ_{as} Mo-O vibrations, out of plane bending vibration of OH⁻ group and stretching vibration of Fe-O, respectively [7,29]. For the ESR measurements, 0.042 g sample was weighed. As can be seen in Fig. 1B, each spectral line consists of a symmetric signal. The value of the peak-to-peak line width $\Delta H_{\rm pp}$ of MoS₂ is larger than that of Fe₂O₃@MoS₂. It was reported that the broadening of ΔH_{pp} indicated a decrease in the unpaired spin density [9]. Thus, the unpaired spin density of Fe₂O₃@MoS₂ is higher than that of MoS₂. Based on this result, it is expected that the Fe₂O₃@MoS₂ composite would result in better electrocatalytic performance than that of bare MoS2.

Download English Version:

https://daneshyari.com/en/article/7145787

Download Persian Version:

https://daneshyari.com/article/7145787

<u>Daneshyari.com</u>