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a  b  s  t  r  a  c  t

Shape  optimization  of  a staggered  herringbone  micromixer  (SHM)  was  performed  using  the three-
dimensional  numerical  analysis  of  fluid  flows  and  mixing  of  two  fluids,  surrogate  modeling,  and  a
multi-objective  genetic  algorithm.  Two design  variables  related  to  dimensions  of  the  grooves,  i.e., depth
and  width,  were  chosen  for optimization.  Three  performance  parameters,  i.e., the  mixing  index  at  the
exit  of  the  micromixer,  overall  friction  factor,  and  mixing  sensitivity,  which  is the  mixing  index  at a
specified  axial  location  in  upstream  part of  the  micromixer,  were  employed  as  the  objective  functions.
Surrogate  modeling  was  performed  for the  objective  functions  using  response  surface  approximation.
Multi-objective  genetic  algorithm  was  used  to find  the  Pareto-optimal  solutions.  Representative  Pareto-
optimal  designs  were  analyzed  using  numerical  analysis  and  a particle  tracking  method.  The  optimization
results  indicate  that  wide  and  deep  grooves  are  desirable  to promote  faster  mixing  with  a  low  pressure
drop  inside  the  SHM.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Microfluidic systems such as lab-on-a-chip and micro-total
analysis systems have gained widespread importance in many
applications such as sample preparation and analysis, drug deliv-
ery, and biological and chemical synthesis [1–4]. Microfluidic
systems exhibit certain inherent advantages over their large scale
counterparts, such as lower energy consumption, higher through-
put, and lower manufacturing costs. However, the small channel
size limits the Reynolds number (Re), which makes the flow lam-
inar. Therefore, the mixing processes inside these microfluidic
systems are diffusion-dominated, unless a mean to perturb the flow
is incorporated. In the last few years, researchers have determined
various methods to perturb the flow using geometrical modifica-
tions (passive micromixers) and external energy/stimulus (active
micromixers) to enhance the mixing at the microscale. Passive
micromixers exploit the micromixer’s geometry to produce com-
plex flow fields that enhance the mixing of the fluid samples,
whereas the active type relies on external agitation. This agita-
tion can be from a pressure disturbance, change in temperature,
magnetic energy, or electrical energy.

Design optimization coupled with computational fluid dynam-
ics (CFD) based on the three-dimensional (3-D) Navier–Stokes
equations has become a reliable tool for design of micromixers due
to the rapid increase in computing power. The objective function(s)
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for the optimization of a micromixer can be selected among the
performance parameters such as mixing efficiency, pressure loss,
and residence time, etc. [5–8]. The staggered herringbone groove
micromixer (SHM), which was  developed by Stroock et al. [9],
has been used by many researchers to create well-posed design
optimizations. The micromixer was developed by placing specially
designed grooves on one or more surfaces of the channel. The
volume of fluid is exposed to a repeated series of rotational and
extensional local flows, which leads to an enhanced mixing per-
formance. Many researchers have studied the groove shape to
understand the underlying mechanisms and mixing performance
of the micromixer. Aubin et al. [10] carried out a qualitative study on
a diagonally grooved micromixer and SHM using a particle tracking
approach and CFD. Later, they determined the effects of the geomet-
rical parameters on mixing inside the SHM and developed a mean
to quantify the mixing performance for various combinations of
the geometrical parameters [11]. A similar study was conducted
by Wang et al. [12] on a SHM. Using CFD simulations and parti-
cle tracking technique, Poincare maps were generated to study the
chaotic flow. Using surrogate models such as radial basis neural
network (RBNN) and response surface approximation (RSA), Ansari
and Kim [5,6] optimized the shape of a SHM with grooves applied
to a bottom wall. The optimizations employed the mixing index as
the objective function and used two  or three design variables. Yang
et al. [13] determined the effects of various geometrical parameters
on mixing performance, flow rate, and pressure drop of a SHM using
the Taguchi method and numerical simulations. Cortes-Quiroz et al.
[7] optimized a SHM for Re between 1 and 10 using CFD, a surro-
gate model, and a multi-objective genetic algorithm (MOGA). The
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Taguchi method was used as a design-of-experiment technique.
The degree of mixing and pressure drop were used as the perfor-
mance parameters for the micromixer. A Pareto-optimal front was
established with an optimized tradeoff, i.e., maximum mixing index
with minimum pressure loss.

For the study of micromixers, designers may  be interested in
assessing the trade-off among various objectives. However, pre-
vious optimization studies were limited to either one- [5,6] or
two- [7] objective optimizations. In contrast to single-objective
optimization (one optimal solution), multi-objective optimization
provides many optimal solutions subjected to a set of objective
functions and constraints. The goal of present work is to develop a
multi-objective optimization procedure that can be applied to the
optimizations of micromixers containing more than two objectives
using MATLAB Optimization Toolbox [14]. A three-objective opti-
mization of a SHM [9] was conducted using surrogate modeling and
MOGA. The width and depth of the grooves inside the SHM were
used as the design variables for the optimization. The performance
parameters, i.e., mixing index, friction factor, and mixing sensitiv-
ity, were the objectives for the optimization. The mixing efficiency
is a critical performance parameter related to the mixing perfor-
mance of the device. The pressure loss is directly related to the
pumping power required to drive the fluids through the micromix-
ers, while the mixing sensitivity determines the susceptibility of
the mixing phenomenon subjected to the design constraints. The
RSA method was used as a surrogate model to approximate the
objective functions combined with the MOGA.

2. Problem formulation

Fig. 1 shows the geometry of the SHM used by Ansari and Kim [5].
For the present study, the geometric variables related to the groove
dimensions, the ratio of groove width to groove pitch (Wd/Pi) and
ratio of groove depth to channel height (d/h), were selected as the
design variables for optimization (Fig. 1). The pitch (Pi) is 2�/q. The
following variables were held constant: 0.077 mm average chan-
nel height (h), 0.2 mm channel width (W), 2�/100 �m−1 principal
wave vector (q), 45◦ ridge orientation, and 2/3 asymmetry fac-
tor (P) [9]. The length of the micromixer was set to 0.01 m with
10 grooves per half-cycle. The channel was parallel to the x-axis.
Inlet channels (Inlets 1 and 2) with cross sectional dimensions of
0.20 mm × 0.10 mm were merged with the main channel using a
T-joint.

2.1. Flow and mixing analysis

To analyze flow and mixing inside the micromixer, the 3-D
Navier–Stokes and mass conservation equations were solved using
ANSYS CFX-12.1 [15], a commercial CFD package based on the finite
volume method. A multi-component model was used to study mix-
tures composed of different species as in the previous works [5–7].
The model assumes that the various fluid species are mixed at the
molecular level and mass transfer takes place by convection and
diffusion. The bulk motion of the fluids was modeled using a single
velocity and pressure, but each component had its own  conser-
vation of mass equation. The relative mass flux terms govern the
motion of the individual components. Since the concentration gra-
dient is the sole source of the relative motion, the relative mass flux
term is modeled as a diffusion-like term. Thus, the conservation of
mass equation for each species results in an advection–diffusion
type equation for the concentration field:

( �V · �∇)Ci = ˛∇2Ci, (1)

where  ̨ is the diffusivity coefficient and Ci is the concentration of
species i [16]. Eq. (1) was used to calculate the mass fraction of each
component.

The specified velocity was  given at each inlet with pure ethanol
at Inlet 1 (mass fraction equal to 1) and pure water at Inlet 2
(mass fraction equal to 0). At the outlet, zero static pressure was
specified, while no-slip condition was  applied at the walls. The
properties of the working fluids, ethanol and water, were measured
at 20 ◦C. The densities of water and ethanol were 9.97 × 102 and
7.89 × 102 kg/m3, respectively. The dynamic viscosities of water
and ethanol were 0.9 × 10−3 and 1.2 × 10−3 kg/m s. The diffusiv-
ity coefficient for the water–ethanol pair was  assumed to be
1.2 × 10−9 m2/s.

In a recent study on the accuracy of the numerical schemes
for scalar mixing, Liu [17] showed that higher-order discretization
schemes are less susceptible to numerical diffusion. Upwind dif-
ferencing schemes are likely to introduce numerical discretization
errors. However, higher-order upwind (second- and third-order
accurate) schemes are known to reduce the numerical diffusion
[18]. Thus, the present work employed a high-resolution second-
order approximation scheme to discretize the advection terms in
the governing equations. The SIMPLEC algorithm [19] was used
for the pressure–velocity coupling. The linearized algebraic system
of equations resulting from the discretization were solved using a
multigrid accelerated incomplete lower–upper (ILU) factorization
procedure for faster convergences. The criterion for convergence
of each equation was a root mean square (RMS) residual value of
10−6.

To evaluate the SHM mixing performance, a variance-based
method was employed. The variance of the species was  determined
on the cross-sectional plane perpendicular to the x-axis. The vari-
ance of the mass fraction of the mixture on a cross-sectional plane
normal to the flow direction can be expressed as

� =

√√√√ 1
N

N∑
i=1

(ci − c̄m)2, (2)

where N is the number of sampling points on the plane, ci is the
mass fraction at sampling point i, and c̄m is the optimal mixing
mass fraction. The values at the sampling points were interpolated
based on values at adjacent computational nodes. The number of
sampling points must be higher than the number of nodes for accu-
racy. A value of N = 900 was found to exhibit good accuracy. Finally,
the mixing index at any cross-sectional plane perpendicular to the
axial direction is defined as

M = 1 −
√

�2

�2
max

, (3)

where �max is the maximum variance over the data range. The mix-
ing index varied from 0 (no mixing) to 1 (complete mixing). An M
value close to 1 indicates a more homogeneous concentration and
better mixing performance.

2.2. Particle tracking

ANSYS FLUENT-12.1 [20] was used to calculate the trajectories
of the massless fluid particles inside the flow using a Lagrangian
particle tracking method. The solver predicts the particle paths
after post-processing the flow field. Movement of massless particle
inside the flow is determined by integrating the vector equation of
motion for each particle:

dxp

dt
= Vp(x). (4)

For the massless particles, the particle velocity is equal to the veloc-
ity of the continuous phase. Hence, the trajectory of each particle
can be obtained using the particle velocity Vp = V, where Vp and
V are velocities of the particle and continuous phase, respectively.
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