
Sensors and Actuators B 188 (2013) 440– 453

Contents lists available at ScienceDirect

Sensors  and  Actuators  B:  Chemical

journa l h om epage: www.elsev ier .com/ locate /snb

A  bootstrapping-based  statistical  procedure  for  multivariate
calibration  of  sensor  arrays

Zongyu  Genga, Feng  Yanga,∗,  Minqi  Lia,  Nianqiang  Wub

a Industrial and Management Systems Engineering Department, West Virginia University, Morgantown, WV 26506, USA
b Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 22 April 2013
Received in revised form 9 June 2013
Accepted 11 June 2013
Available online 22 June 2013

Keywords:
Multivariate calibration
Sensor array
Optimal design of experiments
Bootstrapping
Statistical inference

a  b  s  t  r  a  c  t

One  of the  major  challenges  of calibrating  a sensor  array  lies  in  the  typically  large  samples  required  to esti-
mate  a high-quality  multivariate  calibration  (MC)  model,  which  functionally  relates  the  array  responses
to the target  analyte  concentrations.  For  the  efficient  calibration  of sensor  arrays,  this  work  develops  a
multi-stage  procedure  to guide  the sampling  in a sequential  manner:  Preliminary  experiments  are  per-
formed  in  the  initial  stage  to collect  some  data;  in  each  subsequent  stage,  information  is derived  from  all
the  data  collected  from  the  previous  stages  and  is employed  to obtain  the  optimal  design  of  the  current-
stage  experiments.  The  design  optimization  at each  stage  seeks  to  optimize  the  quality  of  the  MC  model
with  a given  sample  size,  and  is  performed  based  on  the  new  statistical  inference  method,  which  quanti-
fies  the  dependence  of  the MC  model  quality  (the  uncertainty/variability  of  the  model  estimates)  upon  the
design  of experiments.  The  proposed  statistical  inference  takes  advantages  of  both  forward  and  inverse
calibration  modeling  in the  literature,  is  able  to accommodate  nonlinear  sensor  arrays,  and  utilizes  the
bootstrapping  resampling  method  to handle  the  statistical  inference  issues  that  cannot  be  adequately
addressed  by  existing  methods.  Substantial  simulation  studies  have  been  performed  to  demonstrate  the
efficiency  of the  multi-stage  procedure  over the  traditional  once-and-for-all  sampling.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Sensor arrays are widely used to quantify analytes of interest in
applications such as manufacturing control, environment monitor-
ing, homeland security, biomedicine, and food industry. A sensor
array consists of a number of sensors whose responses can provide a
“fingerprint” for the target analytes in an environment. Individual
sensors are subject to cross-sensitivity (i.e., responds to multiple
components present in a background). Hence, a sensor array has to
be coupled with its multivariate calibration (MC) model to quantify
target analytes. The MC  model is a mathematical function relat-
ing the analyte concentrations, denoted as vector c, to the array
responses, denoted as vector r; and it is estimated from experimen-
tal data obtained by exposing the sensor array to a range of samples
(e.g., a gas mixture) with pre-specified analyte concentrations. The
ultimate goal of such a sensing system – both the device and the
MC model – is to allow for the accurate quantification of target
analytes in an unknown environment based on array responses.
Apparently, the MC  model plays a critical role in analyte quan-
tification, and the quality of the model has a direct effect on the
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accuracy of the estimated analyte concentrations given by the
sensing system.

However, efficiently calibrating a sensor array (or obtaining
its MC  model) remains one of the major difficulties in develop-
ing a reliable sensor array system [1]: How to achieve an MC
model of desired quality using the least experimental effort? This
is by nature a design of experiments (DOE) question, which has
been largely ignored in the literature of array calibration. The
vast majority of the existing work has been focused on the esti-
mation of an MC  model assuming that the experimental data is
given (e.g., [2–4]). The few papers that have briefly mentioned
DOE for array calibration include [5–8]. In those reports, the DOE
methods that have been adopted or mentioned were restricted
to classic designs such as fractional factorial designs [9, chapter
4, p. 135] and criteria-based (e.g., D-optimality, A-optimality, etc.)
designs [10, chapter 11, p. 151]. However, these traditional designs
have two major limitations. First, they are based on standard sta-
tistical inference for classic regression modeling that does not
involve the forward-inverse complication present in array calibra-
tion (detailed later). Second, they are built for an MC  model of fixed
functional form, for which everything is pre-specified except the
values of model parameters; at the stage of designing experiments
for multivariate calibration, it is usually difficult (if not impossi-
ble) to have sufficient information to specify the MC model to that
degree.
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Nomenclature

c the variable vector representing the analyte concen-
trations of an environment

C the feasible region (or region of interest) of c
cp the concentration of the pth component analyte
c(f) the true concentration vector for the analytes in an

environment
c(Grid) the vector including all the grid points specified

within C
G the number of grid points in C
P the number of target analytes
Q the number of sensors in the array
r the random vector representing the sensor array

responses
r(f) an observed response vector of the sensor array after

being exposed to an environment with analyte con-
centrations c(f)

ıp the desired standard error on the estimated concen-
tration of the pth component analyte

� the random error vector for array responses
� vector of parameters in the forward MC model
� vector of parameters in the inverse MC  model

To overcome the shortcomings of the existing DOE methods,
we developed a multi-stage procedure for sequential optimal
design/sampling. The optimal design is performed based on the
new bootstrapping statistical inference particularly developed to
quantify the uncertainties of the estimated MC  model for a sensor
array.

2. Problem statement and method overview

For a sensor array, the MC  model is estimated from a set of
experimental data {(ci, ri) ; i = 1, 2, . . .,  I}, where ci represents the
analyte concentrations in the ith sample and ri the observed array
responses. The quality of the MC  model directly depends on the
data set used for estimation. The task of DOE is to provide a set of
design points {c1, c2, c3, . . . } so that sampling at those points with
limited experiment budget leads to an estimated MC  model of the
highest quality.

There are two major difficulties that traditional DOE methods
are not able to handle in designing experiments for array calibra-
tion: the statistical inference issues in the MC  model estimation,
and the lack of information regarding the underlying MC  model
at the stage of designing experiments. We  next discuss these two
difficulties and describe how they are addressed in our method in
Sections 2.1 and 2.2 respectively.

2.1. Statistical inference issues in array calibration

The objective of DOE herein is to optimize the quality of the
MC model with respect to the design points. To solve such an opti-
mization problem, the prerequisite is to quantify how the design
points may  affect the quality of the MC  model, which is usually
measured in terms of the variability (or uncertainty) of the esti-
mated quantities of interest. These quantities may include the fitted
model parameters and the analyte concentrations inferred by the
MC model from observed array responses. How to quantify the rela-
tionship between the variability of model estimation and the design
points? This is a statistical inference issue and is particularly inter-
esting for multivariate calibration of sensor arrays, which involves
both forward and inverse directions.

We consider c → r as the forward direction, obtaining r for a
given c; and the inverse direction refers to r → c, estimating c for
a given r. In contrast to regular statistical modeling where only
the forward direction is involved, array calibration involves both
directions.

• Forward design: at the stage of calibrating a sensor array, the
array is exposed to samples with known analyte concentrations
(specified by the DOE strategy), and the corresponding array
responses are observed. In the sample data, the pre-specified con-
centrations c can be considered as free of errors, since the mixture
samples are prepared with extremely high accuracy; whereas the
observed sensor responses r are subject to random errors due to
instrument noise, environment interference, variation of sensing
materials, etc.

• Inverse estimation: Once a sensor array has been calibrated, it
is integrated with its MC model to infer the analyte concentra-
tions in an unknown environment based on the sensor responses,
which is represented as r → c.

Given the existence of these two  directions in array calibration,
two types of MC  models have been developed in the literature: for-
ward and inverse models [2]. Both types of MC  models intend to
quantify the relationship between r = (r1, r2, . . .,  rQ) and c = (c1, c2,
. . .,  cP). The vector r includes Q elements corresponding to the Q sen-
sors in the array. The vector c involves P analytes, which include the
target analytes as well as interferants that can cause a substantial
change in array responses, that is, a systematic change that cannot
be considered as random noise. Generally, it is required that Q ≥ P
since otherwise c cannot be identified even from an error free r [2,
11, chapter 4].

The forward model is written as

r = F(c, �) + � (1)

where � is the vector of parameters and � the random error vector
on the sensor responses. The advantage of using Model (1) as the
MC  model is that the standard statistical inference methods [12]
can be applied on the model estimation, with c being determinis-
tic and r random (as explained earlier). However, Model (1) has an
obvious drawback: It does not allow for a direct calculation of r → c.
Hence, in operational use of the sensor array, additional inverse
computation needs to be carried out based on F. If F is a pure lin-
ear function of c, the F-based inverse computation can be relatively
easily performed, and an estimate of c can be obtained for a given
r [3]. However, when F involves some nonlinear terms of c (e.g.,
quadratic terms), the F-based inverse computation becomes much
more complicated, and it is subject to issues such as the uniqueness
of the estimated c for a given r; in addition, such inverse compu-
tation will likely be time-consuming, which hinders the real-time
monitoring ability of the sensing system. We  believe that this is at
least one of the reasons why the existing forward MC models all
assume a linear dependence of r upon c [3], which unfortunately
may  well not hold in reality.

On the other hand, the inverse model

c = G(r, �) (2)

seeks to approximate c as a function of r with � being the model
parameters. Apparently, Model (2) can be used directly for real-
time quantification of the analytes, and it can take practically any
functional form adequate to describe the relationship between c
and r. A range of functional forms including kernel basis functions
and neural network have been adopted for the inverse MC  model
[13–18]. But with the predictor variable r being random and the
response c deterministic, standard statistical inference methods
cannot be applied on the estimation of G, and the inference (e.g.,
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