

Contents lists available at SciVerse ScienceDirect

Sensors and Actuators B: Chemical

journal homepage: www.elsevier.com/locate/snb

Novel NASICON-based H₂ sensor with insensitive reference electrode and buried Au sensing electrode

Liang Xishuang, Li Jianguo, Guan Yingzhou, Zhang Han, Liu Fengmin, Lu Geyu*

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China

ARTICLE INFO

Article history: Received 17 August 2012 Received in revised form 22 April 2013 Accepted 23 April 2013 Available online 30 April 2013

Keywords: H₂ sensor NASICON LaCrO₃ Mixed potential

$A \hspace{0.1in} B \hspace{0.1in} S \hspace{0.1in} T \hspace{0.1in} R \hspace{0.1in} A \hspace{0.1in} C \hspace{0.1in} T$

A mixed potential type sensor based on NASICON (sodium super-ionic conductor) was designed for the detection of hydrogen. Two original ways were combined to promote the sensor's sensitivity. LaCrO₃ was applied on Au reference electrode as H₂ oxidation layer to minimize the H₂ response on reference electrode. Additional NASICON layer was coated on Au sensing electrode serving as sensitive electrode for limiting the O₂ diffusion. H₂ temperature-programmed reduction (TPR) measurement was conducted to test the oxidizability of LaCrO₃. The effect of O₂ concentration on sensor's sensitivity was discussed to verify the function of additional NASICON layer. The correlation between the thickness of additional NASICON diffusion layer and sensor's sensitivity was also studied. The research showed that the sensor attached with 0.3 mm thick additional NASICON layer exhibited the largest sensitivity to 100–5000 ppm H₂ at 400 °C, the slope was -123 mV/decade. In addition, the sensor exhibited excellent selectivity to H₂ against the other interference gases, such as CO, NO₂, NH₃, C₇H₈, C₂H₄, CH₂O, C₃H₆O and CH₄.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Hydrogen (H₂), a kind of clean energy, has been widely used in fuel cells, cars with H₂ engine, industrial processing and others [1,2]. However, its security is very important in practical application, since H₂ is a kind of hazardous, odorless and flammable gas. Based on this, the detection of H₂ has recently attracted considerable interest. Hydrogen sensors based on various sensing principles and materials have been widely investigated and developed, e.g., thin film type H₂ sensor [3,4], semiconductor metal oxides type [5–7], diode type [8], FETs type [9,10], solid electrolytes type [11–15], etc. Among these sensors, the solid electrolyte type H₂ sensor exhibits high sensitivity, speedy response kinetics and excellent stability [11-15]. Lu et al. has developed the mixed potential H₂ sensor based on stabilized zirconia and oxide electrode [16]. Though the H₂ sensing device showed an excellent sensing performance, the high operating temperature (500-700 °C) limited its further application. NASICON (Na₃Zr₂Si₂PO₁₂) electrolyte can work at the temperature range of 100-500 °C, and has been widely used as sensing materials for detecting various gases. Besides their relative lower operating temperature, the gas sensors based on NASICON have obvious advantages, such as high selectivity, rapid and reproducible response, low concentration detection. Various NASICON-based sensors, e.g., potentiometric type CO2 sensor

[17–19], amperometric type NO₂ sensor utilizing the nitrite auxiliary electrode [20], as well as mixed potential type sensors using oxide sensing electrode [21–25], have been investigated in the past few years. However, few researches about NASICON-based H₂ sensors have been reported. As for NASICON-based mixed potential type sensors, most attentions have been paid on searching new sensing electrode materials. The study found that NASICON-based sensors attached with Pr_6O_{11} -doped SnO₂ [22], V₂O₅-doped TiO₂ [23], CaMg₃(SiO₃)₄-doped CdS [24], or Cr₂O₃ [25] as the sensing electrodes, can give sensitive and selective respond to dilute H₂S, SO₂, Cl₂ or NH₃ in air, respectively.

For the NASICON-based mixed potential sensors in which the sensing and reference electrodes are exposed to the same gases, electrochemical reactions occur at both electrodes, and the difference of the sensing and reference electrode potentials is measured as the sensing signal (sensitivity) [26]. Thus, blocking the electrochemical reactions at the reference electrode could raise the sensitivity of sensor to target gases. Miura et al. used Mn₂O₃ as gas-insensitive reference electrode for yttria-stabilized zirconia (YSZ)-based potentiometric oxygen sensor [27], the oxygen sensor attached with a couple of Au sensing electrode and Mn₂O₃ reference electrode exhibited large responses to CO, H₂ and unsaturated HCs.

In this work, a new kind of H_2 sensor has been fabricated and evaluated. To get a H_2 -insensitive reference electrode, LaCrO₃ has been applied on the Au electrode because of its oxidation to H_2 at high temperature. Moreover, Au electrode has been used as sensing electrode for the H_2 sensor and an additional NASICON layer has

^{*} Corresponding author. Tel.: +86 431 85167808; fax: +86 431 85167808. *E-mail address:* lugy@jlu.edu.cn (L. Geyu).

^{0925-4005/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.snb.2013.04.096

Fig. 1. Schematic structure of the sensor.

been coated on Au sensing electrode for limiting the diffusion of O_2 , resulting in a great enhancement of sensor's sensitivity. A sensing mechanism involved in the mixed potential, gas diffusion and H_2 oxidation in the LaCrO₃ layer has been proposed.

2. Experimental

2.1. Synthesis of NASICON and LaCrO₃

NASICON was synthesized from $ZrO(NO_3)_2$, NaNO₃, $(NH_4)_2HPO_4$ and $Si(C_2H_5O)_4$ by sol-gel process and calcined at 900 °C for 6 h [24]. Perovskite-type oxide LaCrO₃ was prepared by a citric acid complex method [28]. La $(NO_3)_3$ 6H₂O and Cr $(NO_3)_2$ 9H₂O were used as sources of La and Cr, respectively. The above metal nitrates in stoichiometric ratios were first dissolved in an aqueous solution with an equimolar amount of citric acid, making [M]:[citric acid]=1:1. This mixture was evaporated at 80 °C to make a sol-gel of organic metal complex, followed by an overnight drying at 120 °C and pre-decomposition at 400 °C for 2 h. The precursors were finally calcined in air at 800 °C for 5 h, the increasing and decreasing rates were 10 °C/min and 5 °C/min, respectively.

Phase composition of the prepared powder was verified by Xray diffraction (Rigaku wide-angle X-ray diffractometer (D/max rA, using Cu K α radiation at wavelength λ = 0.1541 nm)). Temperatureprogrammed reduction (TPR) measurements were conducted with a Micromeritics AutoChem 2910 Automated Catalyst Characterization System. About 0.1 g of sample placed in the reactor was activated in a flow of synthetic air at 500 °C at a rate of 10 °C/min for 1 h. After the sample was cooled to 50 °C in synthetic air, a mixture of 10 vol% H₂/Ar was introduced into the sample loop at 50 ml/min. The sample was heated at a rate of 10 °C/min to 800 °C. The effluent gas was passed through a viscous solution of isopropanol, cooled by liquid N₂ to remove the water produced during the reduction, and analyzed with a thermal conductive detector.

2.2. Fabrication of the sensor

The schematic structure of NASICON-based sensor is shown in Fig. 1. A thick film of NASICON was formed on the outer surface of an alumina tube as the ionic conductor layer by applying NASI-CON precursor paste and sintering at 900 °C for 6 h. A couple of ring-shaped Au electrodes were formed on the two ends of the NASICON thick film. An additional NASICON layer and LaCrO₃ layer was coated on one and the other Au electrode by sintering NASI-CON and LaCrO₃ paste at 800 °C and 600 °C for 6 h, respectively. The sensors with 0 mm, 0.1 mm, 0.3 mm and 0.6 mm thick additional NASICON layer were marked as sensor A, B, C and D, respectively. A sensor without LaCrO₃ layer and with 0.3 mm thick additional NASICON layer was marked as sensor E. For keeping the sensor at an appropriate operating temperature, Ni–Cr coil heater was inserted into the alumina tube.

Fig. 2. X-ray diffraction (XRD) pattern of LaCrO₃.

2.3. Measurement of sensing properties

Gas sensing properties of the sensors were measured by a conventional static mounting method. The sample gases containing different H_2 concentration were obtained by diluting pure H_2 with air. When the sensor was exposed to air or the sample gas, the electromotive force (*V*) was measured with a digital electrometer (RIGOL TECHNOLOGIES, INC, DM3054, China) as a sensing signal and the obtained results were registered with a computer connected to the electrometer.

3. Results and discussion

3.1. Characterization of LaCrO₃

Fig. 2 shows the XRD pattern of the as-prepared material. It can be seen that the as-prepared oxide retained its orthorhombic crystallographic phases, corresponding to JCPDS PDFs#71-1231 and was testified to be pure perovskite-type oxide LaCrO₃. The particle size of LaCrO₃ calculated by Debye–Scherrer equation was about 38 nm.

LaCrO₃ is applied on Au reference electrode as oxidation layer for H_2 , the overall H_2 consumption has effect on sensor's sensing properties. The oxidation behavior of LaCrO₃ examined by TPR is shown in Fig. 3. The TPR profile of LaCrO₃ sample exhibited two distinct peaks at 335 and 435 °C. When LaCrO₃ was heated up to

Fig. 3. H_2 TPR profile of LaCrO₃ and dependence of H_2 conversion ratio on temperature.

Download English Version:

https://daneshyari.com/en/article/7148575

Download Persian Version:

https://daneshyari.com/article/7148575

Daneshyari.com