Accepted Manuscript

Title: High sensitivity adsorptive stripping voltammetric method for antimony(III) determination in the presence of quercetin–5′–sulfonic acid. Substituent effect on sensitivity

Author: <ce:author id="aut0005" biographyid="vt0005"> Carlos Rojas<ce:author id="aut0010" biographyid="vt0010"> Verónica Arancibia<ce:author id="aut0015" biographyid="vt0015"> Marisol Gómez<ce:author id="aut0020" biographyid="vt0020"> Edgar Nagles

PII: S0925-4005(13)00631-X

DOI: http://dx.doi.org/doi:10.1016/j.snb.2013.05.058

Reference: SNB 15546

To appear in: Sensors and Actuators B

Received date: 27-3-2013 Revised date: 13-5-2013 Accepted date: 16-5-2013

Please cite this article as: C. Rojas, V. Arancibia, M. Gómez, E. Nagles, High sensitivity adsorptive stripping voltammetric method for antimony(III) determination in the presence of quercetin–5′–sulfonic acid. Substituent effect on sensitivity, *Sensors and Actuators B: Chemical* (2013), http://dx.doi.org/10.1016/j.snb.2013.05.058

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

High sensitivity adsorptive stripping voltammetric method for antimony(III)

determination in the presence of quercetin-5'-sulfonic acid. Substituent effect on

sensitivity

Carlos Rojas, Verónica Arancibia*, Marisol Gómez, Edgar Nagles.

Facultad de Química, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860,

Santiago-7820436, Chile.

ABSTRACT

high sensitivity method for voltammetric determination of Sb(III) using

quercetin-5'-sulfonic acid (QSA) as complexing and adsorbing agent is presented. The

Sb-QSA is accumulated on the electrode surface and then reduced at about -0.67 V.

Optimal analytical conditions were pH: 5.5, C_{OSA} : 3.0 μ mol L^{-1} , E_{ads} : -0.10 V and t_{ads} : 60 s.

The detection limit (3σ) depends on accumulation time, reaching 3.6 and 1.6 ng L⁻¹ with

t_{ads} of 60 and 180 s, respectively. Peak current is proportional to Sb(III) concentration up to

10.0 μ g L⁻¹ and 1.5 μ g L⁻¹ with t_{ads} of 60 and 180 s, respectively. The relative standard

deviation were 1.7 and 2.5% for a solution containing 1.0 and 5.0 µg L⁻¹ of Sb(III)

respectively (n = 10). Interference by other metal ions was studied. The proposed method

was applied to the determination of antimony in natural and spiked water samples, with

satisfactory results. The method was designed in order to compare the sensitivity of the

methods that use quercetin and the sulfonic derivative.

Keywords: Antimony, Quercetin–5'–sulfonic acid, Adsorptive Stripping Voltammetry

*E-mail: darancim@uc.cl

1

Download English Version:

https://daneshyari.com/en/article/7148879

Download Persian Version:

https://daneshyari.com/article/7148879

Daneshyari.com