ARTICLE IN PRESS

Solid State Electronics xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Solid State Electronics

journal homepage: www.elsevier.com/locate/sse

Low-power logic computing realized in a single electric-double-layer MoS₂ transistor gated with polymer electrolyte

Junjie Guo, Dingdong Xie, Bingchu Yang, Jie Jiang*

Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China

ARTICLE INFO

ABSTRACT

The review of this paper was arranged by Dr. Y. Kuk *Keywords:* Polymer electrolyte Electric-double-layer MoS₂transistor Logic computing Due to its mechanical flexibility, large bandgap and carrier mobility, atomically thin molybdenum disulphide (MoS₂) has attracted widespread attention. However, it still lacks a facile route to fabricate a low-power high-performance logic gates/circuits before it gets the real application. Herein, we reported a facile and environment-friendly method to establish the low-power logic function in a single MoS₂ field-effect transistor (FET) configuration gated with a polymer electrolyte. Such low-power and high-performance MoS₂ FET can be implemented by using water-soluble polyvinyl alcohol (PVA) polymer as proton-conducting electric-double-layer (EDL) dielectric layer. It exhibited an ultra-low voltage (1.5 V) and a good performance with a high current on/ off ratio ($I_{on/off}$) of 1 × 10⁵, a large electron mobility (μ) of 47.5 cm²/V s, and a small subthreshold swing (S) of 0.26 V/dec, respectively. The inverter can be realized by using such a double-lateral-gate single MoS₂ EDL transistor. These results show an effective step for future applications of 2D MoS₂ FETs for integrated electronic engineering and low-energy environment-friendly green electronics.

1. Introduction

Recently, two-dimensional (2D) transition metal dichalcogenides (TMDs) as a series of new materials have aroused widespread concerns due to their special electrical and optical properties [1–8]. TMDs possess a appropriate band gap of about 1–2 eV, showing potentially applicable in the field of nanoelectronics, photonics and sensing [9–15]. Specifically, TMDs-based FETs have been reported by different groups [16–23]. Among the different TMDs, one of the most promising materials is molybdenum disulphide (MoS₂) [9,24–29]. It has an indirect bandgap of 1.2 eV for bulk forms, and increase to 1.8 eV with a direct bandgap for the monolayer MoS₂ [28,29]. Up to now, MoS₂-based field-effect transistors (FETs) have attracted increasing attentions in many applications, for example, gas detectors [30], photo-electricity detectors [31] and logic circuit [32], etc.

Currently, electric-double-layer (EDL) transistors [33–36] has attracted many attentions relying on the use of gating media characterized by very high specific capacitance such as electrolyte materials and ion-gel dielectrics [37–44]. EDL transistors have considerable advantages. Firstly, electrolyte materials and ion-gel dielectrics have been widely investigated, as they exhibit very high specific capacitance values above 1 μ F/cm² for films that can be thick and potentially printable

using conventional methodologies [37–44]. It's reported that the high capacitance is due to the formation, upon polarization of the gel, of a very thin EDL (~1 nm) at the electrolyte-semiconductor interface following ion migration within the electrolyte and subsequent accumulation of carriers in the semiconductor [44]. Secondly, EDL transistors generally have lower operation voltage, which makes it possible for low-energy efficient electronic equipment. At the same time, logic circuit is a building block for integrated circuit including in the field of low-dimensional materials [45–47]. However, until now, few work was reported that polymer materials, including electrolyte materials and ion-gel dielectrics, have been used to realize logic functions in a single MoS_2 EDL transistor.

In this paper, logic functions in MoS_2 FET can be scaled down to a single transistor level by using water-soluble polyvinyl alcohol (PVA) as the proton-conducting EDL dielectric layer in MoS_2 FET. Such single MoS_2 FET exhibits a low operation voltage (~1.5 V) due to the formation of EDL after using PVA as a top dielectric layer. Based on this device structure, the inverter can be realized using such single MoS_2 FET with a gain of ~4 at the operation voltage of only ~1 V. Furthermore, the dynamic AND logic gate can be successfully implemented by a double-lateral-gate single MoS_2 EDL FET with such PVA protonic dielectric layer. These results show a vital step for future

* Corresponding author. E-mail addresses: bingchuyang@csu.edu.cn (B. Yang), jiangjie@csu.edu.cn (J. Jiang).

https://doi.org/10.1016/j.sse.2018.02.007

Received 8 September 2017; Received in revised form 20 December 2017; Accepted 17 February 2018 0038-1101/ @ 2018 Elsevier Ltd. All rights reserved.

ARTICLE IN PRESS

J. Guo et al

applications of 2D MoS₂-based FET for integrated electronic engineering, low-power sensors, and green flexible electronics.

2. Experimental details

Multilayer MoS_2 flakes were mechanically exfoliated by conventional Scotch-tape approach from bulk crystal and transferred subsequently to a slice of heavily doped silicon substrate with 300 nm SiO₂ capping layer. After proper MoS_2 flakes were selected under an optical microscope, 30-nm-thick Ni film was deposited by photolithography and thermal evaporation to prepare source/drain electrodes. 10 wt% PVA solution was then drop-casted onto the MoS_2 layer as the dielectric layer, which the powder of PVA was bought from Sigma-Aldrich company without any further process/purification. Atomic force microscopy (AFM) was used to measure the thickness of MoS_2 flakes, and the number of layers in MoS_2 was evaluated by Raman spectroscopy. The Hioki IM3539 LCR Meter is used to perform the frequency-dependent capacitance and phase angle measurements of PVA, and a Keithley 4200 semiconductor parameter analyzer is used to measure the I-V characteristics of the MoS_2 FET at room temperature in dark.

3. Results and discussion

The schematic diagram of traditional bottom-gated MoS_2 device structure can be found in Fig. 1(a), while the schematic diagram of topgated MoS_2 transistor with PVA dielectric is shown in Fig. 1(b), respectively. In our device, two Ni electrodes were bridged by an exfoliated MoS_2 flake with a channel length of 6.65 µm and width of 4.78 µm, respectively. As shown in Fig. 1(c), the thickness of MoS_2 flake was estimated to be ~7 nm extracted by AFM image, which about 10 layers based on a 0.65 nm thickness per layer value [9]. The Raman spectroscopy of MoS₂ flake in our MoS₂ FET is shown in Fig. 1(d). The E_{2g}^1 (384 cm⁻¹) and A_{1g} (409 cm⁻¹) modes are observed in the MoS₂ flake. Based on the previous report, the in-plane opposing motions of molybdenum and sulfur atoms is reflected by the vibration of $C_i = \frac{\varepsilon_0 \varepsilon_T}{d} = 1.15 \times 10^{-8}$ F/cm² mode, and that is the out-of-plane relative motions of sulfur atoms is reflected by A_{1g} mode [24,48]. The two sharp peaks of MoS₂ flake has almost the same peak distance (Δ_{peak} shift ≈ 25 cm⁻¹) comparing the MoS₂ single crystal material, which indicate that MoS₂ flake has two typical characteristic peaks and thus negligible structural damages [49].

For examining the performance of the fresh MoS₂ device at room temperature, the output curves and transfer curve of MoS₂ FET are tested in the dark. Fig. 2(a) shows the output curves of traditional bottom-gated MoS₂ transistor measured by $V_{\rm DS}$ from 0 V to 5 V with a fixed $V_{\rm GS}$ from -10 V to 20 V, with 5 V steps. The corresponding transfer curve (log to linear) is shown by measuring the $V_{\rm GS}$ from -20 V to 20 V with a fixed $V_{\rm DS}$ bias of 0.1 V in Fig. 2(b). It clearly indicates that the MoS₂ device operated in a typical n-type enhancement-mode. Current on/off ratio ($I_{\rm on/off}$) and subthreshold wing (*S*) are observed to be 3.6×10^4 and 5.42 V/dec, respectively. Than the threshold voltage ($V_{\rm th}$) is extracted to be 16.21 V by extrapolating the linear portion of $I_{\rm DS}$ - $V_{\rm GS}$ curve to a zero drain current from the transfer curve. Finally, it can be accurately extracted the field-effect mobility (μ) base on the equation [50]:

$$\mu = \frac{L}{W \times C_{\rm i} \times V_{\rm DS}} \times \frac{\mathrm{d}I_{\rm DS}}{\mathrm{d}V_{\rm G}} \tag{1}$$

where the *L* is the MoS₂ channel length and *W* is the MoS₂ channel width, and $C_i = \frac{\varepsilon_0 \varepsilon_r}{d} = 1.15 \times 10^{-8}$ F/cm² is the SiO₂ dielectric capacitance ($\varepsilon_0 = 8.85 \times 10^{-12}$ F/m represents the vacuum permittivity, $\varepsilon_r = 3.9$ represents the relative dielectric constant of SiO₂, and d = 300 nm represents the thickness of the gate insulator, respectively).

Fig. 1. (a) The schematic cross-section of multilayer MoS₂ transistor. (b) The schematic cross-section diagram of MoS₂ transistor using PVA as dielectric layer. (c) AFM image at the MoS₂ flake edge. (d) The Raman spectroscopy for the MoS₂ flake.

Download English Version:

https://daneshyari.com/en/article/7150309

Download Persian Version:

https://daneshyari.com/article/7150309

Daneshyari.com