Accepted Manuscript

Surface Stoichiometry Modification and Improved DC/RF Characteristics by Plasma Treated and Annealed AlGaN/GaN HEMTs

Bhanu B. Upadhyay, Kuldeep Takhar, Jaya Jha, Swaroop Ganguly, Dipankar Saha

PII: S0038-1101(17)30550-6

DOI: https://doi.org/10.1016/j.sse.2017.11.001

Reference: SSE 7356

To appear in: Solid-State Electronics

Received Date: 15 July 2017 Accepted Date: 8 November 2017

Please cite this article as: Upadhyay, B.B., Takhar, K., Jha, J., Ganguly, S., Saha, D., Surface Stoichiometry Modification and Improved DC/RF Characteristics by Plasma Treated and Annealed AlGaN/GaN HEMTs, *Solid-State Electronics* (2017), doi: https://doi.org/10.1016/j.sse.2017.11.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Surface Stoichiometry Modification and Improved DC/RF Characteristics by Plasma Treated and Annealed AlGaN/GaN HEMTs

Bhanu B. Upadhyay, Kuldeep Takhar, Jaya Jha, Swaroop Ganguly, and Dipankar Saha

Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai,
Mumbai - 400076, India.
Email: dipankarsaha@iitb.ac.in

Abstract

We demonstrate that N_2 and O_2 plasma treatment followed by rapid thermal annealing leads to surface stoichiometry modification in a AlGaN/GaN high electron mobility transistor. Both the source/drain access and gate regions respond positively improving the transistor characteristics albeit to different extents. Characterizations indicate that the surface show the characteristics of that of a higher band-gap material like Al_xO_y and Ga_xO_y along with N-vacancy in the sub-surface region. The N-vacancy leads to an increased two-dimensional electron gas density. The formation of oxides lead to a reduced gate leakage current and surface passivation. The DC characteristics show increased transconductance, saturation drain current, ON/OFF current ratio, sub-threshold swing and lower ON resistance by a factor of 2.9, 2.0, $10^{3.3}$, 2.3, and 2.1, respectively. The RF characteristics show an increase in unity current gain frequency by a factor of 1.7 for a 500 nm channel length device.

Keywords: RF, HEMT, Plasma treatment, AlGaN/GaN

1. Introduction

GaN based high electron mobility transistors (HEMTs) are being actively pursued for various high frequency and power applications [1, 2, 3, 4]. Various methods have been employed to improve the device performance including

Download English Version:

https://daneshyari.com/en/article/7150448

Download Persian Version:

https://daneshyari.com/article/7150448

<u>Daneshyari.com</u>