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a b s t r a c t

An efficient program for the all-quantum simulation of nanometer field-effect transistors is elaborated.
The model is based on the Landauer–Buttiker approach. Our calculation of transmission coefficients
employs a transfer-matrix technique involving the arbitrary precision (multiprecision) arithmetic to cope
with evanescent modes. Modified in such way, the transfer-matrix technique turns out to be much faster
in practical simulations than that of scattering-matrix. Results of the simulation demonstrate the impact
of realistic channel imperfections (random charged centers and wall roughness) on transistor character-
istics. The Landauer–Buttiker approach is developed to incorporate calculation of the noise at an arbitrary
temperature. We also validate the ballistic Landauer–Buttiker approach for the usual situation when
heavily doped contacts are indispensably included into the simulation region.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The continuing progress in silicon VLSI technology motivates a
transition to silicon-on-insulator (SOI) wafers. Just these structures
definitely suppress short channel effects which substantially im-
pair the bulk MOSFET performance. This is the ultrathin body
(UTB) (1–5 nm) fully depleted (FD) silicon on insulator (SOI) struc-
ture (Fig. 1) that will take an ultimate advantage of SOI wafers and
provide an advancement of the silicon technology to extreme
channel lengths. As a result, such structures will exhibit higher fre-
quencies and a lower power consumption.

As a carrier wavelength becomes commensurable with the
channel size, the all-quantum simulation of such small devices be-
comes challenging. One of the most intriguing issues is an impact
of realistic channel imperfections (random charged centers and
wall roughness) on transistor characteristics. It is crucial for the
evaluation of the statistical variability of transistors in large inte-
grated circuits. The most vital is a variability of threshold voltages
[1,2] which encumber lowering of the drive voltage necessary for
lower power applications.

Methods of quantum simulation were in a rapid progress for
more than two preceding decades. The leading ones are the
non-equilibrium Green’s functions (NEGF) [3–12] and the Landa-
uer–Büttiker (LB) approach [3,4,13–19]. In the ballistic regime they
evidently coincide. To calculate the transmission coefficients one

could exploit the transfer-matrix (T-matrix method) [20–23] or
that of scattering-matrix (S-matrix) [3,4,24–29]. Previously, it
was widely supposed that the conventional T-matrix method failed
to cope with evanescent modes. However, recently an efficient
method involving the arbitrary precession (multiprecision) arith-
metic was put forward [30–32]. The advanced transfer-matrix
technique is much faster in practical simulations than that of scat-
tering-matrix. Moreover, the proposed means turned out to be
powerful for simulations based on any wave equations, in particu-
lar, electromagnetic waves in non-uniform media, e.g., nanostruc-
tured solar cells [33,34].

Current noise is one of major transistor characteristics required
for practical applications. We derive a general expression to calcu-
late the current noise for an arbitrary temperature and voltage
bias. This expression could be used in the same simulation of the
field-effect transistor based on the Landauer–Buttiker approach.

We also address an issue of validity of the ballistic Landauer–
Buttiker approach for the usual situation when heavily doped con-
tacts with strong scattering are indispensably included into the
simulation region. A question arises whether a transistor with a
ballistic channel is really ballistic. Recently this ‘perpetual’ prob-
lem was also discussed in Ref. [35]. Here we ague that a fairly high
and steep potential barrier at the contacts justifies the ballistic
simulation.

2. Efficient T-matrix method for quantum simulation

We calculate transmission coefficients Ti from the Schrödinger
equation and then evaluate dependence of the drain current I on
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the source-drain voltage VD via the Landauer–Buttiker formula up-
graded to the situation:

I ¼ 2e
h

X
m

X
i

Z
dETiðEÞ½fSðEÞ � fDðEÞ�; ð1Þ

where fS and fD are the Fermi–Dirac distribution functions in the
source and drain contacts, respectively, shifted by a drain bias
eVD, E is a total energy including the quantization energy and the
longitudinal motion energy. Formula (1) implies the summation
over all wave-guide modes i involved into the simulation and all
conduction band valleys t. The pre-summation factor originates in
the conductance quantum for spin-unpolarized current G0 = 2e2/h,
where h is the Planck constant, namely,

Ti ¼

P
j
jcþi;jj

2kj
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is the total transmission coefficient of an incident wave belonging
to the i-th mode with unity amplitude and the longitudinal wave
vector ki at the channel entrance, cþi;j is an amplitude of the j-th out-
going mode at the channel exit with the wave vector kj. The sum-
mation in the above formula for Ti conserves the current.

In spite of the fact that the Landauer–Buttiker approach is for-
mulated explicitly, it is based on several suppositions which are
not apparent. We discuss them in Appendix A.

The necessary transmission coefficients in Eq. (1) are deter-
mined via a self-consistent solution of the Schrödinger and Poisson
equations (the Hartree mean field approach). To be more precise,
the scattering problem for the three-dimensional stationary Schrö-
dinger equation should be solved.

A brief description of the procedure is presented below. In fact,
we follow a straightforward strategy which was widely used for a
non-uniform electromagnetic wave-guide description long time
ago. The stationary Schrödinger equation is:
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" #

wðx; y; zÞ

¼ Ewðx; y; zÞ; ð2Þ

where U(x, y, z) = �eu(x, y, z) is a potential energy inside the chan-
nel, mx, my, mz are the electron effective masses along correspond-
ing axes of the silicon conduction band structure (Fig. 2).

The exact wave function in any cross-section x is expanded over
all transversal modes ui(y, z) for the uniform wave-guide:

wðx; y; zÞ ¼
X1
i¼1

ciðxÞ �uiðy; zÞ: ð3Þ

The complete set of functions ui(y, z) obeys the two-dimensional
Schrödinger equation.
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with the following boundary conditions: the functions ui(y, z) van-
ish on the wave-guide walls because of a high potential barrier at
the contact of silicon with surrounding dielectrics. However, a
microscopic description of those boundaries seems challenging
[36,37]. Solutions of Eq. (4) give rise to the mode energies ei. For a
uniform rectangular wave-guide the transversal functions are trivial
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where W is the channel width (y-axis), dSi is the channel thickness
(z-axis), i = (n, m), n and m are non-negative integers. The functions
ui(y, z) are real, orthogonal, and normalized per unity so thatZ

dy
Z

dzuiðy; zÞujðy; zÞ ¼ dij ð7Þ

where dij is the Kronecker delta symbol.
Substituting (3) for w(x, y, z) into the Schrödinger Eq. (2), then

multiplying it by uj(y, z) and integrating over the transversal coor-
dinates y and z, one obtains the following set of equations for
amplitudes:
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where

UijðxÞ ¼
Z
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is nothing else but the matrix element of the potential.
We retain a finite number of modes in the expansion (3). Justi-

fication of such a reduction lies in the behavior of matrix elements
of the bare Coulomb potential U(r) � 1/r for upper modes j = (n, m),
n� 1, m� 1, namely,

UijðxÞ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þm2
p : ð10Þ

Therefore, under such circumstances, transformation of the incident
mode i into upper modes j is negligible. The necessary number of
modes involved into consideration could be determined immedi-
ately during the simulation.

Eq. (8) is to be solved on a uniform mesh with nodes in x = xk,
k = �1, 0, 1,. . ., N, N + 1, N + 2 and step Dx. The finite difference
approximation of Eq. (8) is

Fig. 1. Structure of FD ETSOI FET in simulation (spacers are removed for clarity).

Fig. 2. Silicon conduction band structure matched with the channel.
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