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a b s t r a c t

We investigate the robustness of distributed averaging integral controllers for optimal frequency regu-
lation of power networks to noise in measurements, communication and actuation. Specifically, using
Lyapunov techniques, we show a property related to input-to-state stability of the closed loop system
with respect to this noise. Using this result, a tuning trade-off between controller performance and noise
rejection is highlighted.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The modern AC power system balances supply and demand in
real time despite faults and fluctuations in demand, supply and
transport. Adequate control techniques on the supply side ensure
all units on the network enjoy a stable voltage amplitude and fre-
quency, which is critical for safety and performance. Traditionally,
these challenges have been addressed using centralized control on
multiple time scales, exploiting the large inertia in generation units
to compensate for the relatively small effect of fluctuations and
faults.

Recently, increasing prevalence of renewable low-inertia gen-
eration units has increased volatility of supply on small and large
time scales. Additionally, the emergence of so-called microgrids
has introduced the compelling case of a small-scale network that
can operate independently of the larger power grid, relying on
small local generators. Inspired by this, an active research area has
emerged to deal with this volatility in a decentralized and flexible
way.

This work focuses on the secondary control layer. Various ap-
proaches for secondary control have been taken in recent years, for

✩ This work was partially supported by the NWO-URSES project ENBARK (Grant
number is 408-13-037), the DST-NWO IndoDutch Cooperation on ‘‘Smart Grids
- Energy management strategies for interconnected smart microgrids’’ and the
STW Perspectief program ‘‘Robust Design of Cyber–physical Systems’’ –‘‘Energy
Autonomous Smart Microgrids’’.

* Corresponding author.
E-mail addresses: e.r.a.weitenberg@rug.nl (E. Weitenberg), c.de.persis@rug.nl

(C. De Persis).

example primal–dual methods [1–3], internal-model control [4,5]
and distributed averaging integral (DAI) control [6–8,5]. We inves-
tigate the latter approach.

Previously the performance of the DAI controller has been ad-
dressed e.g. by Flamme et al. [9], who derived a H2-optimum
for the controller parameters under measurement noise. Simi-
larly, Wu et al. [10] useH2 techniques to find the optimal commu-
nication topology for the DAI controller. Additionally, Andreasson
et al. [11] performed an analysis of the linearized system. In the
present work however, we additionally consider frequency noise,
and provide a stability certificate for the non-linear system instead
of a linearized one. This has the additional advantage of making
the work applicable to other systems with similar strongly convex
dynamics.

1.1. Main contribution

To our knowledge, while the DAI controller offers stability [5]
and exponential convergence [12], its robustness to noise in fre-
quencymeasurements, actuation and communication has not been
formally established. Recently, it was shown that the so-called
leaky integral controller offers attractive robustness properties and
tuning opportunities, though it lacks exact frequency regulation
[13]. In this work, we show that the DAI controller in fact satisfies
an input-to-state stability with restrictions property and robust-
ness with respect to measurement noise, and for completeness
also to actuation and communication noise. The analysis builds on
results from Weitenberg et al. [12], but the ISS-with restrictions
result pursued in this paper, as opposed to the exponential stability
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result from Weitenberg et al. [12], requires to extend these results
to the presence of disturbances and eventually show that the
Lyapunov function proposed in Weitenberg et al. [12] is indeed
an ISS-Lyapunov function. The result obtained is analogous to the
result obtained in Weitenberg et al. [13] for the leaky integral
controller, but the use of the distributed averaging controllers
considered in this paper calls for a Lyapunov function different
from Weitenberg et al. [13], which requires some adjustments in
the analysis. Moreover, we show how this result can be exploited
in the choice of tuning parameters for the controllers, highlighting
a trade-off between robustness to noise and speedy response to
fluctuations in demand. This makes the DAI controller a well-
performing and comparably robust alternative to the leaky integral
controller, if a communication network is available.

The remainder of this paper is organized as follows. In Sec-
tion 2, the power network model is introduced, as well as the
control objectives and the DAI controller. The energy function
used to analyze the closed-loop system is introduced, along with
its various properties, in Section 3. In Section 4, we exploit this
energy function to derive a robustness property of the closed-loop
system. This leads to an interesting trade-off between robustness
and performance, which is highlighted in Section 5.

2. Setting

The power network is viewed as a graph G = (V, E). The
systems at the nodes are partitioned into a set of nG generators
and a set of nL loads, with n = nG + nL. As such, V = VG ∪ VL.
The graph’s edges represent the m physical power lines between
the various power systems.

We denote the n × m incidence matrix of G by B. Without loss
of generality, we assume the first nG rows of B correspond to the
generator nodes and the others to the loads. Accordingly, we write
B⊤

= [B⊤

G ,B⊤

L ].
We model the power network using the Bergen–Hill equations

[14,15].

θ̇G = ωG (1a)

MGω̇G = −DGωG − BGΓ sin(B⊤θ ) + u (1b)

DLθ̇ L = −BLΓ sin(B⊤θ ) − P . (1c)

Here, θ ∈ Rn denotes the vector of voltage angles of the
synchronous machines and loads at the nodes, relative to a frame
of reference rotating at a nominal frequency ω∗, usually 50 or
60Hz. Likewise, ω ∈ Rn denotes a machine’s frequency deviation
from ω∗. D and M are diagonal n × n matrices encoding the droop
gain and inertia at each node respectively, with the understanding
that inertia at the load nodes is zero. As with B, the subscript
G and L denote partition of vectors and (diagonal) matrices into
source and load nodes, i.e. θ = [θ⊤

G , θ⊤

L ]
⊤, ω = [ω⊤

G , ω⊤

L ]
⊤,

M = block diag(MG,ML) et cetera. Γ is a diagonal m × m matrix
encoding the susceptance Bk of the power lines and the voltage
amplitudes Vi and Vj at each edge as Γkk = BkViVj, for each edge
k = (i, j) ∈ E . Finally, u ∈ RnG is the control input and P ∈ RnL is
the demand at the load nodes. In the Bergen–Hill model, these load
nodes are assumed to be dynamic as opposed to static impedance
loads, which are subsequently absorbed into the line susceptances
in a reduced network [14].

For ease of analysis, we will use the following equivalent form
of (1), in which we introduce the potential function U(θ ) =

−1⊤Γ cos(B⊤θ ):

θ̇ = ω (2a)
MGω̇G = −DGωG − ∇U(θ )G + u (2b)

0 = −DLωL − ∇U(θ )L − P . (2c)

Remark 1. The analysis in this paper of the behavior of the DAI
controller is not limited to the swing equations seen in power
networks, but to a large class of nonlinear passive networks [16]. In
fact, as long as the potential function U is strongly convex and the
diagonal matricesMG and D are positive definite, the results hold.

The generator nodes are controlled by distributed averaging in-
tegral controllers [17,5,18]. These controllers are equipped with a
communication network Gu = (VG, Eu), consisting of all generator
nodes and an edge set possibly different from that of G. Under
mild assumptions (detailed later) and noise-free circumstances,
these controllers minimize a quadratic cost function C(u) =
1
2

∑
i∈VG

Qiu2
i while ensuring that

∑
i∈G ui =

∑
i∈L Pi [18]. This

allows the user to guarantee economically optimal operation, in
addition to frequency regulation.

We apply the DAI controller with measurement noise ν1. Ad-
ditionally, we allow for communication noise ν2 to occur before
transmission.

u̇i = −

∑
j∈N i

Qiui − Qj(uj + ν2,j)

−Q−1
i (ωi + ν1,i). (3)

We define the noise νω so that both the measurement noise and
the communication noise are encapsulated in it. That is, νω,i :=

ν1,i −
∑

j∈N i QiQjν2,j. As a result, we write the controller in vector
form as

u̇ = −LuQu − Q−1(ωG + νω). (4)

The noise νω = νω(t) is assumed to be an infinity-norm-
bounded function of time. Likewise, and for the sake of complete-
ness, we assume the control input contains noise, replacing (2b)
by

MGω̇G = −DGωG − ∇U(θ )G + u + νu, (5)

where again, νu = νu(t) is an infinity-norm-bounded function of
time.

For ease of analysis, we now apply a coordinate transformation
on the rotor angles θ . Following [12,13], instead of these, we use
the offset from the average of the angles, setting δ := Πθ :=

(I −
1
n11⊤)θ . Note that B⊤Π = B⊤, as B⊤1 = 0. We will commit a

slight abuse of notation by using the symbol U to also refer to the
potential as a function of δ.

2.1. Steady state analysis

The system (2) in closed loop with distributed averaging inte-
gral controllers is well studied [8,18,12]. In the noise-free case, the
system converges exponentially to a synchronous solution δ̄, ω̄ =

0, ū satisfying

0 = −∇U(δ̄) + col(ū, −P) (6)

ū = Q−11G
1⊤

L P
1⊤

G Q−11G
, (7)

provided the following assumption holds:

Assumption 1 (Feasibility). There exists a vector δ̄ ∈ ImΠ such
that (6)–(7) is satisfied. Moreover, there exists a ρ ∈

(
0, π

2

)
such

that B⊤δ̄ is in the interior of Θ := [ρ −
π
2 , π

2 − ρ]
n.

It will be convenient for later analysis to write the closed-loop
system in incremental form [see e.g. 5], recalling that the notation
vG, vL is used to partition a vector v into subvectors for the sources
and loads:

δ̇ = Πω (8a)
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