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a b s t r a c t

In 1998, A. Karimi and I.D. Landau published in this journal an article entitled ‘‘Comparison of the closed-
loop identication methods in terms of bias distribution’’. One of its main purposes was to provide a bias
distribution analysis in the frequency domain of closed-loop output error identication algorithms that
had been recently developed. The expressions provided in that paper are only valid for prediction error
identification methods (PEM), not for pseudo-linear regression (PLR) ones, for which we give the correct
frequency domain bias analysis, both in open- and closed-loop. Although PLR was initially (and is still)
considered as an approximation of PEM, we show that it gives better results at high frequencies.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the field of discrete-time identification, the bias distribution
analysis over frequency domain is very powerful in order to evalu-
ate the influence of input and noise spectra on an identifiedmodel,
and to assess qualitatively the model that can be obtained if it
has not the same structure as the identified system. This method
was first introduced in [1] for open-loop identification; see [2] for
more details, especially in the context of closed-loop operations. In
these two references, this bias analysis has been developed in the
perspective of prediction error methods (PEM), which aim atmini-
mizing a one step further prediction error variance. In [3,4], Karimi
and Landau used the same method to infer the bias distribution
of closed-loop algorithms. In [3] (section 5) and [5] (section 6), it
is claimed that this analysis is valid for CLOE, F-CLOE algorithms
which are of PLR type. However, this is not true as already noticed
in [4], p. 308, although PLR was initially (and is still) considered
as an approximation of PEM (see, e.g., remark 8.4.2 of [6]); rather,
PLR algorithms tend to cancel the correlation function between
the prediction error and an observation vector, which in general is
the regressor of the predictor, possibly filtered (see the correlation
approach developed by Ljung in [2]). If the system dynamics is
approximately known beforehand, the difference between PEM
and PLR can be made quite small, as shown in Section 4, with
an appropriate regressor filtering. But this approach presupposes
that what one is seeking is already known, a vicious circle which
prevents fromaddressing the core of the problem. It is said in [4] (p.
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308) that the bias distribution cannot be computed for CLOE algo-
rithm. Therefore, bias distribution of PLR algorithms, such as CLOE,
is an open problem, which is solved here; this bias distribution is
determined andwe show that it is quite different from that of PEM.
To do this we introduce in Section 3, the concept of equivalent
prediction error – most of the time a non-measurable signal –
whose variance is effectivelyminimized by the PLR algorithm, even
if the identified system is not in the model set. This approach
shows that compared to PEM, PLR schemes strongly penalize the
modelmisfit at high frequency, in away comparable to the classical
open-loop least-squares algorithm, whatever the predictor model
is (output error, ARMAX, etc.). In Section 5, an example is given,
that relies on the Vinnicombe gap, in order to compare the model
misfit of a PEM scheme and its corresponding PLR one: It brings to
light the discrepancy between the twomethods in case of a closed-
loop output error (CLOE) identification structure.

2. Optimal prediction error and bias distribution analysis of
PEM algorithms

At first, let us recall briefly the model structures used here,
both in open- and closed-loop, and the manner to obtain the bias
distribution from PEM algorithms. According to Landau et al. ([3],
p. 44), we distinguish between equation error models and output
error models. Equation error model in open-loop corresponds to
the equation:

A(q−1)y(t) = B(q−1)u(t) + C(q−1)e(t)

with G(q−1) =
B(q−1)
A(q−1)

, and W (q−1) =
C(q−1)
A(q−1)

, respectively, the
deterministic and stochastic parts of the model; q−1 the shift
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backward operator, A(q−1) is a monic polynomial, W (q−1) is the
ratio of two monic polynomials, and u(t), y(t), e(t) are the input,
the output, and a centered gaussian white noise, respectively.

According to the noise structure, we distinguish between the
following cases:

• when C(q−1) = 1, corresponding to the ARX model,
• when C(q−1) is amonic polynomial of degree strictly greater

than 0, corresponding to the ARMAX model.

Other equation error models exist (e.g. ARARMAX, etc.) but they
are not treated in this paper. On the other hand, the output error
model in open-loop is given by

y(t) = G(q−1)u(t) + v(t)

where v(t) is a centered gaussian noise not necessarily white, but
uncorrelated with the input.

Let us call Ĝ(q−1) and Ŵ (q−1) the estimations of G(q−1) and
W (q−1), respectively. In the case of an open-loop equation error
model, the prediction error is given by ([4], (3.3)), ([4], (9.62):

ε(t) = Ŵ (q−1){(G(q−1) − Ĝ(q−1))u(t)
+ (W (q−1) − Ŵ (q−1))e(t)} + e(t) (1)

whereas the optimal error for the open-loop output error model is
simply:

ε(t) = (G(q−1) − Ĝ(q−1))u(t) + v(t)

The closed-loop case is more complicated, due to the feedback
control law. We assume that the controller has an R-S structure,
i.e. S(q−1)u(t) = −R(q−1)y(t); let us define the direct sensitivity
function (transfer function from the output noise to the output):

Syp(q−1) =
A(q−1)S(q−1)

A(q−1)S(q−1) + B(q−1)R(q−1)

In the context of an equation error model, in which the model
input is given by S(q−1 )̂u(t) = −R(q−1 )̂y(t), the optimal predicted
output is

ŷ(t) = Ĝ̂u(t) + Ŵ (q−1)ε(t)

where Ŵ (q−1) = Ŵ (q−1)− Ŝ−1
yp (q−1) (see [3], eq. (5.7) sq.), thus we

have:

ε(t) = Ŵ−1(q−1){(G − Ĝ)Sypru(t) + (WSyp̂S−1
yp − Ŵ )e(t)} + e(t)

This expression is directly obtained from ([3], (5.12)).
The optimal predicted output is given by ŷ(t) = Ĝ̂u(t), and the

corresponding optimal prediction error of output error model by

ε(t) = Ŝyp(G − Ĝ)Sypru(t) + Sypv(t)

where Ŝyp =
ÂS

ÂS+̂BR
, Â, B̂ being the estimations of A and B, respec-

tively (the dependence in q−1 is omitted).
The purpose of PEM algorithms is to minimize the prediction

error variance E[ε2(t)], and whatever the algorithm structure is,
both in open or closed-loop, one obtains the optimal estimated
parameter vector θ̂∗

PEM :

θ̂∗

PEM = Arg min E[ε2(t)] = Arg min
∫

+π

−π

⏐⏐Z{ε}(eiω)
⏐⏐2dω (2)

where Z is the z-transform. This expression is at the origin of bias
analysis for PEM algorithms.

3. Bias distribution of pseudo-linear regression algorithms

3.1. Equivalent prediction error

The a posteriori model predicted output ŷ(t + 1) is provided by
ŷ(t + 1) = θ̂ (t + 1)φ(t, θ̂ ), where φ(t, θ̂ ) is the regressor structure,
generally depending on θ̂ . The a posteriori prediction error is given
by the expression: ε(t +1) = y(t +1)− ŷ(t +1, θ̂ ). Most of the PLR
identification procedures are solved recursively with the so-called
parameter adaptation algorithm (PAA):

θ̂ (t + 1) = θ̂ (t) + F (t)φ(t)ε(t + 1) (3a)

F−1(t + 1) = λ1F−1(t) + λ2φ(t)φT (t) (3b)

F (t) is the adaptation gain (positive definite matrix), 0 < λ1 ≤

1, 0 ≤ λ2 < 2 are forgetting factors. The stationary condition of
the PAA is (see [2], p. 224):

E[ε(t + 1)φ(t)] = 0 (4)

Lemma 1. In general, the stationarity condition of the parameter
adaptation algorithm E[ε(t+1)φ(t, θ̂ )] = 0, is not the one associated
with the prediction error variance E[ε2(t)] minimization.

Proof. As a counterexample let us consider the extended least
squares algorithm (corresponding to an ARMAX model), for
which the predicted output is ŷ(t + 1) = θ̂ Tφ(t). Let ε(t) =

y(t) − ŷ(t), θ̂ T
= [̂a1, . . . b̂1, . . . ĉ1, . . .] and φ(t)T =

[−y(t), . . . u(t), · · · ε(t), . . .]. Let Ĉ(q−1) = 1 + ĉ1q−1
+

ĉ2q−2
· · · and assume that Ĉ(q−1) ̸= 1. One has that φ(t, θ̂ ) =

−Ĉ(q−1, θ̂ ) ∂ε(t+1)
∂θ̂

. In this case the stationary condition of the pa-
rameter adaptation algorithm is E[ε(t + 1)̂C(q−1) ∂ε(t+1)

∂θ̂
] = 0.

Therefore ∂

∂θ̂
E
[
ε(t + 1)2

]
= 2E

[
ε (t + 1) ∂ε(t+1)

∂θ̂

]
cannot be zero

unless {ε (t + 1)} is white, and that cannot happen if the system is
not in the model set. □

Lemma 2. In PLR schemes, the stationarity condition E
[
ε
(
t +

1
)
φ
(
t, θ̂

)]
= 0 is the stationary condition of the variance mini-

mization problem of the signal εE(t + 1, θ̂ ), called the ‘‘equivalent
prediction error’’ in the sequel, and characterized by the following two
conditions:

(1) If the system is in the model set and if the estimated parameter
vector θ̂∗

PLR is equal to the true parameters vector θ (θ = θ̂∗

PLR), then
one has:

• for the equation error model:
εE(t + 1, θ̂∗

PLR) = εE(t + 1, θ ) = ε(t + 1, θ ) = e(t + 1)
• for the open-loop output error model:

εE(t + 1, θ̂∗

PLR) = εE(t + 1, θ ) = ε(t + 1, θ ) = v(t + 1)
• for the closed-loop output error model:

εE(t + 1, θ̂∗

PLR) = εE(t + 1, θ ) = ε(t + 1, θ ) = Sypv(t + 1)

(2) The vector φE(t) = −
∂εE (t+1)

∂θ̂
, called the ‘‘equivalent regres-

sor’’, is not a function of θ̂ , i.e. ∂φE (t)
∂θ̂

= 0.

Proof. By (2), ∂φE (t)
∂θ̂

= 0, so that εE(t + 1) = −θ̂ TφE(t) + k (k
independent of θ̂ ). By (1) we get:
e(t + 1) = −θ TφE(t) + k for the equation error model,
v(t + 1) = −θ TφE(t) + k for the open-loop output error model,
Sypv(t+1) = −θ TφE(t)+k for the closed-loop output error model.

Combining the preceding equations, one gets the following
prediction error expressions:
εE(t + 1) = (θ − θ̂ )TφE(t) + e(t + 1) for the equation error model,
εE(t +1) = (θ − θ̂ )TφE(t)+v(t +1) for the open-loop output error
model,
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