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a b s t r a c t

We study a networked control problem of uncertain systems based on quantized signals sent over unreli-
able, lossy communication channels. The coarsest quantization is characterized for attaining the objective
of quadratic stability of the overall closed-loop system in a stochastic sense. Our result indicates that the
coarsest quantization is given by the logarithmic type and thatmore information is required through finer
quantization for more uncertain systems and more unreliable channels. The characterization provides an
analytic upper bound for the coarseness, which is tight for some special cases and generalizes known
results for systems without uncertainties and for channels without losses.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Discretization of signals through quantization has long been
recognized as an important part of digital control systems, po-
tentially introducing interesting nonlinear effects. However, more
recently, studies of networked control systems have strongly mo-
tivated the consideration of quantization from the viewpoint of
information constraints. Quantized signals can be measured in
terms of bit rates, and a fundamental problem in this setting is to
find the lowest possible amount of information that a control signal
should possess to achieve control objectives. For stabilization of
linear systems, various limitations in quantized signals have been
found including the celebrated minimum data rate theorem (see,
e.g., [1,2]).

One line of research initiatedby thework of [3] is to characterize
the coarseness in quantizers to guarantee quadratic stability of
networked control systems. The coarsest quantizer is known to
take the logarithmic form with the special structure that quan-
tization is fine around the origin, but becomes coarser for larger
inputs. This structure is intuitively reasonable for the purpose of
controlling the states towards the origin. Moreover, coarseness in
quantization has a limitation depending on the level of instability
in the plant dynamics, that is, more unstable systems require
finer quantization. Relatedworks include [4] which studies control
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performancewith quadratic costs and theH∞ norm, and [5] which
takes account of randomdata packet losses in the characterization.
Further, a sampled-data control approach is developed in [6] to
guarantee quadratic stability in the continuous-time domain.

The focus of this paper is on dealing with uncertainties in
control systems. Several approaches can be found in the literature
of quantized control dealing with this aspect. The first approach
is based more on the perspective of robust control. For data-
rate limited control, the work [7] provides an upper bound on
the data rate to stabilize quantized feedback systems. For control
with coarse quantization, the work [8] considers robust control
problems for both static and dynamic logarithmic quantizers. Sta-
bilization of stochastic systems with time-varying uncertainties
can be found in [9]. More recently, in [10,11], the minimum data
rate was derived for parametrically uncertain systems controlled
over unreliable channels. An approach based on switching control
is developed in [12], where a suitable controller is chosen by a
switching controller which estimates plant parameters on-line. On
the other hand, adaptive control strategies can handle uncertain-
ties with fewer constraints and have been studied in [13,14] for
linear plants and [15,16] for nonlinear plants.

In this paper, following the formulation of [3], we study the
stabilization problem for a class of uncertain linear systems with
parametric uncertainties [17]. It is a generalization of our recent
work [18] to the case where the network is unreliable in that
data packets transmitted may become lost stochastically; the non-
uncertain case was dealt with in [5]. Our goal is to characterize
the coarsest quantization scheme for such systems to achieve
stochastic quadratic stability under a given quadratic Lyapunov
function.
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Fig. 1. Networked control system.

It will be demonstrated that more uncertain systems or more
unreliable channels mandate finer quantization for stabilization.
In our development, we show that the consideration of packet
losses in this context complicates the problem, making it difficult
to obtain closed form solutions that hold in general. However, our
study leads us to an analytic boundon the coarseness for the special
cases when the level of loss probability or uncertainties is small.
This bound generalizes those of [3,5,18]. The relations among them
will be discussed in detail.

This paper is organized as follows. In Section 2, we formulate
the problem of quantized control for uncertain networked sys-
tems over lossy channels. In Section 3, we provide bounds on the
coarsest quantizer for a given Lyapunov function. The proofs of
the results are given in Section 4. In Section 5, we illustrate the
proposed approach via a numerical example. Finally, concluding
remarks are given in Section 6. This paper is based on [19], but
contains the full proofs of the results and more discussions.

2. Problem formulation

Consider the networked control system depicted in Fig. 1. We
first describe the system setup briefly. The plant G is a single-input
single-output discrete-time linear system and has uncertain pa-
rameters. The control signal uk ∈ R is generated by the controller
K and then quantized by the quantizer q before being sent over
the network. In the channel, we assume that there is no network
latency and the data rate is high enough to transfer all the data
within the sampling period. To simplify the problem, we assume
that the word length is infinite. That is, the quantized signal takes
discrete values which form an infinite set.

The plant G is an n-dimensional autoregressive system with
uncertain parameters, which may be time varying, as

yk+1 = a1,kyk + a2,kyk−1 + · · · + an,kyk−n+1 + v̂k, (1)

where v̂k ∈ R is the input and yk ∈ R is the output. The
parameters ai,k are uncertain and take the form ai,k = a∗

i + ∆i,k,
i = 1, . . . , n, k ∈ Z+, where a∗

i is the nominal part and ∆i,k
is the uncertain part. Let ∆k ∈ R1×n be the uncertainty vector
given by ∆k :=

[
∆n,k ∆n−1,k · · · ∆1,k

]
. We assume that the

uncertainty is contained in the bounded set D ⊂ Rn as

∆k ∈ D, ∀k ∈ Z+. (2)

The uncertain plant (1) can be expressed in the controllable
canonical form as

xk+1 = A(∆k)xk + bv̂k, yk = cxk,

where xk := [yk−n+1 yk−n+2 · · · yk]T ∈ Rn is the state, and the
system matrices A(∆k) ∈ Rn×n, b ∈ Rn×1, and c ∈ R1×n are given
by

A(∆k) :=

⎡⎢⎢⎣
0 1 · · · 0
...

. . .
. . .

...

0 0 · · · 1
an,k an−1,k · · · a1,k

⎤⎥⎥⎦ , b :=

⎡⎢⎢⎣
0
...

0
1

⎤⎥⎥⎦ , c := bT . (3)

We make the assumption that the matrix A(∆k) has at least one
unstable eigenvalue for any ∆k. For later use, denote the nominal
A-matrix by A∗

:= A(0).
The control signal is generated over the network. First, the

controller K provides the control input uk by

uk =

n∑
i=1

fiyk−i+1 = fxk, (4)

where f ∈ R1×n is the feedback gain to be designed.
For this control signal to be sent over a network channel, it is

quantized by the memoryless quantizer q(·) as

vk = q(uk). (5)

Here, the quantizer is a piecewise constant function to be designed
so as tominimize the necessary communicationunder themeasure
of its coarseness [3] given by

dq := lim
ϵ→0

sup
♯u[ϵ]
− ln ϵ

, (6)

where ♯u[ϵ] denotes the number of quantized levels of q in the
interval [ϵ, 1/ϵ]. Hence, it measures the density of the discrete
values according to a certain logarithmic weight.

The channel is unreliable as the data packets transmitted may
get lost with a certain loss probability [20].When the packet is lost,
the control input applied at the actuator becomes zero. The loss
process denoted by θk ∈ {0, 1} for k ∈ Z+ is independent and
identically distributed (i.i.d.) and is specified as Prob

{
θk = 0

}
= p

and Prob
{
θk = 1

}
= 1− p, where p ∈ (0, 1) is the loss probability.

Based on this process, the control input is given by

v̂k = θkvk.

In our networked control problem, the objective is to achieve
stabilization of the closed-loop systemunder the notion of stochas-
tic quadratic stability as defined next.

Consider the nonlinear discrete-time time-varying system
given by

xk+1 = g(xk, θk, k), (7)

where xk ∈ Rn is the state, and θk ∈ {0, . . . ,N − 1} is the mode
of the system at time k ∈ Z+. The mode is a stochastic process
and is i.i.d. as pi = Prob{θk = i}. The function g(x, θ, k) satisfies
g(0, θ, k) = 0 for any θ and k, and thus the origin x = 0 of the
system is an equilibrium.

Definition 1. For the system in (7), the origin is said to be stochasti-
cally quadratically stable if there exist a positive-definite function
V (x) := xTPx and a positive-definite matrix R such that

E
[
V (xk+1)| xk

]
− V (xk) ≤ −xTkRxk, ∀xk ∈ Rn. (8)

The condition (8) is a sufficient condition for the origin of the
system in (7) to be mean square stable, i.e., for every initial state
x0, it holds limk→∞E[∥xk∥2

| x0] = 0, where ∥ · ∥ is the Euclidean
norm. For stochastic systems, it is essential that in (8), the absolute
averaged decreasing rate of a Lyapunov function V is bounded by
a quadratic function of x. Unlike in the deterministic case, taking
R = 0 in (8) is not enough to guarantee stability [5].

The quantized control problem of the paper can be stated as
follows: For the networked uncertain control system in Fig. 1, given
the loss probability p, find the quantizer q(·) which is the coarsest
in the sense of (6) and guarantees stochastic quadratic stability of
the origin.

The interesting aspect of the approach based on the quadratic
stability notion above is that it leads us to analytic limitations on
the coarseness of quantizers. The work of [5] considered the case
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