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a b s t r a c t

We prove that input-to-state stability (ISS) of nonlinear systems over Banach spaces is equivalent to
existence of a coercive Lipschitz continuous ISS Lyapunov function for this system. For linear infinite-
dimensional systems, we show that ISS is equivalent to existence of a non-coercive ISS Lyapunov function
and provide two simpler constructions of coercive and non-coercive ISS Lyapunov functions for input-to-
state stable linear systems.

© 2018 Elsevier B.V. All rights reserved.

Input-to-state stability (ISS) was introduced by Sontag in his
seminal paper [1] and has since become a backbone of robust
nonlinear control theory. Applications of ISS include robust stabi-
lization of nonlinear systems [2], design of nonlinear observers [3],
analysis of large-scale networks [4,5] and other branches of non-
linear control [6].

The success of ISS theory of ordinary differential equations
(ODEs) and the need for proper tools for robust stability analysis of
partial differential equations (PDEs)motivated the development of
ISS theory in the infinite-dimensional setting [7–15].

The two main lines of research within infinite-dimensional ISS
theory are the development of a general ISS theory of evolution
equations in Banach spaces and the application of ISS to particular
important PDEs.

The results in the first area include small-gain theorems for
interconnected infinite-dimensional systems and their applica-
tions to nonlinear interconnected parabolic PDEs over Sobolev
spaces [8], ISS theory for linear systems over Banach spaces with
admissible operators [11,16] and characterizations of local and
global ISS properties [14,15]. For the second question, construc-
tions of ISS Lyapunov functions for nonlinear parabolic systems
over Lp-spaces [7], for linear time-variant systems of conservation
laws [17], bilinear systems over Banach spaces [9], systems with
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saturations [18] and more have been investigated. Non-Lyapunov
methods were applied to linear parabolic systems with boundary
disturbances in [11,19].

In this paper, we follow the first line of research and prove con-
verse Lyapunov theorems for ISS of linear and semilinear evolution
equations in Banach spaces. For us the primary motivation comes
from the papers [20,21], in which converse UGAS Lyapunov theo-
rems have been applied to prove, in the case of ODEs, the equiv-
alence between ISS and the existence of a smooth ISS Lyapunov
function. This result alongwith further restatements of ISS in terms
of other stability notions [21,22] and small-gain theorems [4,5] is
at the heart of ISS theory.

In Section 1, we prove that ISS is equivalent to the existence
of a coercive, Lipschitz continuous ISS Lyapunov function using the
method from [21] and converse Lyapunov theorems for global
asymptotic stability [23]. Along the way, we show that ISS is
equivalent to the existence of a globally stabilizing feedbackwhich
is robust to multiplicative actuator disturbances of bounded mag-
nitude.

In Section 2 we provide simpler constructions of coercive
and non-coercive ISS Lyapunov functions for linear infinite-
dimensional systems with bounded input operators. In particular,
we show that the existence of a non-coercive ISS Lyapunov function
is sufficient for ISS of linear systemswith bounded input operators.

In Section 3 we discuss recent results and open problems in the
theory of non-coercive ISS Lyapunov functions and in the Lyapunov
theory for linear systems over Banach spaceswith admissible input
operators.
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LetR+ := [0,∞). For the formulation of stability properties the
following classes of functions are useful:

P := {γ : R+ → R+ | γ is continuous,
γ (r) = 0 ⇔ r = 0} ,

K := {γ ∈ P | γ is strictly increasing } ,

K∞ := {γ ∈ K | γ is unbounded } ,

L :=

{
γ : R+ → R+ | γ is continuous and strictly

decreasing with lim
t→∞

γ (t) = 0
}
,

KL := {β : R+ × R+ → R+ | β is continuous,
β(·, t) ∈ K, β(r, ·) ∈ L, ∀t ≥ 0, ∀r > 0} .

For a normed space X , we denote the closed ball of radius r

around 0 by Br or B
X
r if we want to make the space clear.

Given normed spaces X,W , we call a function f : W → X
locally Lipschitz continuous, if for all r > 0 there exists a constant
Lr such that

∥f (x) − f (y)∥X ≤ Lr∥x − y∥W ∀x, y ∈ Br,W .

In the finite-dimensional case, local Lipschitz continuity is some-
times defined using neighborhoods of points, and in this case, this
is of course equivalent. Note that in the infinite-dimensional case
it is necessary to go to a definition on bounded balls as these are
not compact. Our terminology is consistent with [24, p. 185]. This
concept is called ‘‘Lipschitz continuity on bounded balls’’ in [25].

1. Converse ISS Lyapunov theorems for semilinear systems

We consider infinite-dimensional systems of the form

ẋ(t) = Ax(t) + f (x(t), u(t)), (1)

where A : D(A) ⊂ X → X generates a strongly continuous
semigroup of bounded linear operators, X is a Banach space and
U is a normed linear space of input values. As the space of admis-
sible inputs, we consider the space U := PCb(R+,U) of globally
bounded, piecewise continuous functions from R+ to U .

In this paper we consider mild solutions of (1), i.e. solutions of
the integral equation

x(t) = Ttx(0) +

∫ t

0
Tt−sf (x(s), u(s))ds (2)

belonging to the class C([0, τ ], X) for certain τ > 0. Here {Tt , t ≥

0} is the C0-semigroup generated by A. For the theory of C0-
semigroups and its applications to evolution equations we refer
to [25,26]. In the sequel, we will write φ(t, x, u) to denote the
solution of (2) corresponding to the initial condition φ(0, x, u) = x
and the input u ∈ U .

In the remainder of the paper we suppose that the nonlinearity
f satisfies the following assumption:

Assumption 1. Let f : X × U → X be locally bi-Lipschitz
continuous, i.e. f is locally Lipschitz continuous from the normed
linear space (X × U, ∥ · ∥X + ∥ · ∥U ) to the space X .

Due to standard arguments, Assumption 1 implies that mild
solutions corresponding to any x(0) ∈ X and any u ∈ U exist
and are unique. Bi-Lipschitz continuity of f is too strong for mere
existence and uniqueness, butwe need it for the proof of Lemmas 1
and 4.

Remark 1. Note that there are interesting infinite-dimensional
systems, which are not covered by the class of systems (1). In
particular, boundary control systems can be described by control
systems with unbounded input operators [27], which are not cov-
ered by (1). The development of converse Lyapunov results for this

class of systems is a challenging problem. Some preliminary results
have been shown in [28], see Section 3 for a short discussion.

Furthermore, some highly nonlinear systems (even without
inputs) as e.g. the porous medium equation [29], the nonlinear
KdV equation [30] are not covered by (1), and should be modeled
using methods of nonlinear semigroup theory, which is closely
connected to the theory of maximal monotone operators [31].

We call the system (1) forward complete, if for all initial condi-
tions x ∈ X and all u ∈ U the solution exists on R+.

We treat u as an external input, which may have significant
influence on the dynamics of the system. For the stability analysis
of such systems a fundamental role is played by the concept of
input-to-state stability, which unifies external and internal stabil-
ity concepts.

Definition 1. System (1) is called input-to-state stable (ISS), if it
is forward complete and if there exist β ∈ KL, γ ∈ K such that
∀x ∈ X , ∀u ∈ U and ∀t ≥ 0 we have

∥φ(t, x, u)∥X ≤ β(∥x∥X , t) + γ (∥u∥U ). (3)

A key tool to study ISS are ISS Lyapunov functions.

Definition 2. A continuous function V : X → R+ is called a
non-coercive ISS Lyapunov function, if V (0) = 0 and if there exist
ψ2 ∈ K∞, α ∈ P and χ ∈ K so that

0 < V (x) ≤ ψ2(∥x∥X ) ∀x ∈ X \ {0}. (4)

and so that the Dini derivative of V along the trajectories of the
system (1) satisfies the implication

∥x∥X ≥ χ (∥u(0)∥U ) ⇒ V̇u(x) ≤ −α(∥x∥X ) (5)

for all x ∈ X and u ∈ U , where

V̇u(x) = lim
t→+0

1
t

(
V (φ(t, x, u)) − V (x)

)
. (6)

If, in addition, there exists ψ1 ∈ K∞ such that

ψ1(∥x∥X ) ≤ V (x) ≤ ψ2(∥x∥X ) ∀x ∈ X, (7)

then V is called a coercive ISS Lyapunov function.

In Definition 2 we have defined ISS Lyapunov functions in
the so-called implication form. For another (dissipative) definition
of ISS Lyapunov functions and for the relation between these
definitions please consult [9]. We have the following result, see
[9, Proposition 1].

Proposition 1. If there exists a coercive ISS Lyapunov function for (1),
then (1) is ISS.

We intend to show, see Theorem 5, that

ISS of (1) implies the existence of a coercive, locally Lipschitz
continuous Lyapunov function for (1).

We follow the method developed in [21] for systems described
by ODEs. In order to formalize the robust stability property of (1),
we consider the problem of global stabilization of (1) by means
of feedback laws which are subject to multiplicative disturbances
with a magnitude bounded by 1. To this end let ϕ : X → R+ be
locally Lipschitz continuous and consider inputs

u(t) := d(t)ϕ(x(t)), t ≥ 0, (8)

where d ∈ D := {d : R+ → D, piecewise continuous}, D := {d ∈

U : ∥d∥U ≤ 1}.
Applying this feedback law to (1) we obtain the system

ẋ(t) = Ax(t) + f (x(t), d(t)ϕ(x(t)))
=: Ax(t) + g(x(t), d(t)). (9)
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