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a b s t r a c t

In this paper we address the positive (state–feedback) stabilization of multi-input compartmental sys-
tems, i.e. the design of a state–feedbackmatrix that preserves the compartmental property of the resulting
feedback system, while achieving stability. We first provide necessary and sufficient conditions for the
positive stabilizability of compartmental systems whose state matrix is irreducible. Then we address the
case when the state matrix is reducible, identify two sufficient conditions for the problem solution, and
then extend them to a general algorithm that allows to verifywhen the problem is solvable and to produce
a solution.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The stabilization of positive systems and the dual problem of
positive observer design have been the subject of several papers
(see, e.g., [1–9]). Most of the literature focused on the general
class of positive systems and translated the positive stabilization
problem either into a Linear Matrix Inequality (LMI) [6], or into a
Linear Programming (LP) problem [7], by making use of the fact
that the positive/Metzler matrix of the system obtained by means
of a state–feedback is Schur/Hurwitz if and only if it admits a pos-
itive diagonal Lyapunov function (condition that leads to the LMI
formulation) or a linear copositive Lyapunov function (condition
that leads to an LP condition). The solution in terms of LP, even
if equivalent from a theoretical viewpoint, is preferable due to its
lower computational complexity. Moreover, it lends itself to be
easily extended to copewith robust stabilization in the presence of
polytopic uncertainties, stabilization with restricted sign controls
and stabilization with bounded controls [7].

Alternative approaches to the positive stabilization problem
have been proposed in [8] and [2]. The characterization derived
in [8] is based on the construction of certain polytopes and on
verifying whether a selection of their vertices can be used to con-
struct a stabilizing state–feedbackmatrix. On the other hand, in [2]
the problem of achieving by means of a state–feedback not only
positivity and stability, but also certain L1 and L∞ performance,
has been investigated. Also in this case, necessary and sufficient
conditions for the existence of a solution have been expressed as
LPs.
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(Linear) compartmental systems are a special class of positive
state-spacemodels that represent physical systems inwhich units,
called compartments, exchange material and are subject to the
law of mass conservation. Such systems were first introduced in
physiology [10] and they are characterized by the fact that their
state variables are nonnegative and their sum,

∑n
i=1xi(t), cannot

increase with time. For a general introduction to compartmental
systems we refer the interested reader to [11,12].

The (positive) stabilization of single-input compartmental sys-
tems has been thoroughly investigated in [4] (see also [13]): very
strong characterizations, that rely only on the nonzero patterns of
thematrices involved in the systemdescription, have beenderived.
These characterizations do not find a straightforward extension to
the class ofmulti-input compartmental systems, forwhich positive
stabilizability also depends on the specific entries of the involved
matrices and not only on their nonzero patterns (see Example 10).
On the other hand, the only results available in themulti-input case
are simply the aforementioned ones, derived for the general class
of multi-input positive systems. It turns out that the compartmen-
tal property allows to obtain much stronger characterizations of
the positive stabilizability property. Evenmore, it allows to consid-
erably simplify the LPs that provide conditions that are equivalent
to the existence of a solution.

In this paper we investigate the positive stabilization of multi-
input compartmental systems, by first showing that when the
original system matrix A is irreducible, the positive stabilization
problem is solvable if and only if it can be solved by resorting to a
state–feedback that depends on a single compartment. Necessary
and sufficient conditions for this to be the case are given, in the
form of Linear Programming: since these conditions involve only
a single column, they are quite simpler than the general ones
obtained for multi-input positive systems.
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When the systemmatrix is reducible on the other hand, we first
provide two sets of sufficient conditions for positive stabilizability
that involve a very low number of system compartments, and are
based on the property that a compartmental matrix is Hurwitz
if and only if all its compartments are outflow connected. The
intuition behind these two sufficient conditions is then formalized
in graph terms and this allows to provide a necessary and sufficient
condition for positive stabilization in the form of an algorithm. The
algorithmprovides a solution having a number of nonzero columns
that does not exceed the number of communication classes of the
original compartmental state matrix. This means that the solu-
tion modifies the outflow of a minimal number of compartments,
specifically, at most one per communication class. From a practical
point of view, this means that the state–feedback law is expressed
in terms of the values of a small subset of the state variables,
a property that may be extremely convenient when sensors are
expensive or quite difficult to locate. For instance, it may be the
case that very few state variables are actually available for mea-
surements and in this sense the proposed solution is extremely
convenient. On the other hand, in order to be able to exploit the
proposed algorithm, the knowledge of the communication classes
of the digraph associated with the matrix A is required. If this
information is available, the algorithm can impose a significantly
lower computational burden with respect to the one required to
solve the LPs proposed in [7] for the general case of an unstructured
pair of matrices (A, B).

The paper is organized as follows. In Section 2, notation,
mathematical preliminaries and problem statement are given.
In Section 3, three technical lemmas are given. As a starting point,
in Section 4, the class of compartmental systems whose system
matrix is irreducible is thoroughly investigated. In Section 5, the
analysis is extended to address the case when the system matrix
is reducible, and conditions that ensure positive stabilizability
are given. Finally, Section 6 presents a necessary and sufficient
condition for positive stabilization of multi-input compartmental
systems in the form of an algorithm. Examples illustrate the var-
ious conditions provided in the paper. A preliminary version of
the first part of this paper was presented at the IEEE Conference
on Decision and Control, CDC 2017, in Melbourne, Australia [14].
In [14]we have investigated only the irreducible case and provided
one sufficient condition for the solvability in the reducible case.
So, the second part of Section 5 (starting from Proposition 17) and
the whole Section 6, where the final problem solution and the
algorithm to obtain it are derived, are the novel contribution of this
paper.

2. Preliminaries and problem statement

Given k, n ∈ Z, with k ≤ n, the symbol [k, n]Z denotes the
integer set {k, k + 1, . . . , n}, namely [k, n] ∩ Z. The semiring of
nonnegative real numbers is denoted by R+. In the sequel, the
(i, j)th entry of amatrixA is denoted by [A]i,j, while the ith entry of a
vector v is denoted by [v]i. Following [15], we adopt the following
terminology and notation. Given a matrix A with entries [A]i,j in
R+, we say that A is a nonnegative matrix, if all its entries are
nonnegative, namely [A]i,j ≥ 0 for every i, j, and if so we use the
notation A ≥ 0. If A is a nonnegative matrix, and A ̸= 0, then A
is said to be a positive matrix and we adopt the notation A > 0.
Note that A > 0 does not mean that all its entries are positive,
but simply that at least one of them is positive and the remaining
ones are nonnegative. Notation A ≥ B (A > B) means A − B ≥ 0
(A − B > 0). The symbols ≤ and < are defined accordingly. Also,
the same notation is adopted for vectors.

We let ei denote the ith vector of the canonical basis in Rn

(where n is always clear from the context), whose entries are all
zero except for the ith one that is unitary. The symbol 1 denotes

a vector with all entries equal to 1 (and whose size is clear from
the context). Given a matrix A ∈ Rn×m (in particular, a vector), its
nonzero pattern ZP(A) is the set {(i, j) ∈ [1, n]Z × [1,m]Z : [A]i,j ̸=

0}. We denote by Si ∈ R(n−1)×n the selection matrix obtained by
removing the ith row in the identity matrix In, namely

Si =

[
Ii−1 0 0(i−1)×(n−i)

0(n−i)×(i−1) 0 In−i

]
.

The size n will always be clear from the context, namely from the
size of thematrix or vector Si is applied to. For anymatrixA ∈ Rn×m,
SiA denotes the matrix obtained from A by removing the ith row,
while for any vector v ∈ Rn, Siv is the vector obtained from v by
removing the ith entry. A real square matrix A is Hurwitz if all its
eigenvalues lie in the open left complex halfplane, i.e. for every λ

belonging to the spectrum σ (A) of A we have Re(λ) < 0.
A Metzler matrix is a real square matrix, whose off-diagonal

entries are nonnegative. This is equivalent to saying that for every
h ∈ [1, n]Z the vector ShAeh is nonnegative. For n ≥ 2, an
n× n nonzero Metzler matrix A is reducible [16,17] if there exists a
permutation matrix Π such that

Π⊤AΠ =

[
A1,1 A1,2
0 A2,2

]
,

where A1,1 and A2,2 are square (nonvacuous) matrices, otherwise
it is irreducible. In general, given a Metzler matrix A, a permutation
matrix Π can be found such that

Π⊤AΠ =

⎡⎢⎢⎣
A1,1 A1,2 . . . A1,s
0 A2,2 . . . A2,s
...

. . .
. . .

...

0 . . . 0 As,s

⎤⎥⎥⎦ , (1)

where each diagonal blockAi,i, of sizeni×ni, is either scalar (ni = 1)
or irreducible. Eq. (1) is usually referred to as Frobenius normal form
of A [17,18].

If A is an n× nMetzler matrix, then as proved in [19] it exhibits
a real dominant (not necessarily simple) eigenvalue, known as
Frobenius eigenvalue anddenotedbyλF (A). Thismeans thatλF (A) >

Re(λ), ∀ λ ∈ σ (A), λ ̸= λF (A).
Basic definitions and results about cones may be found, for

instance, in [20,21].We recall here only those facts thatwill be used
within this paper. A setK ⊂ Rn is said to be a cone if αK ⊆ K for all
α ≥ 0; a cone is convex if it contains, with any two points, the line
segment between them. A convex cone K is said to be polyhedral if
it can be expressed as the set of nonnegative linear combinations of
a finite set of generating vectors. This means that a positive integer
k and a matrixW ∈ Rn×k can be found, such that K coincides with
the set of nonnegative combinations of the columns of W . In this
case, we adopt the notation K := Cone(W ). A convex cone K is
polyhedral if and only if there exists a matrix C ∈ Rp×n such that
K = {x ∈ Rn

: Cx ≥ 0}.
A Metzler matrix endowed with the additional property that

the entries of each of its columns sum up to a nonpositive number,
i.e., 1⊤A ≤ 0⊤, is called compartmental matrix (see [11,22]). For any
such matrix the Frobenius eigenvalue λF (A) is nonpositive, and if
λF (A) = 0 then A is simply stable, i.e., it has the constant mode
associated with λF (A) = 0, but no unstable modes.

In this paper we will focus on compartmental models, which
are typically used to describe material or energy flows among
compartments of a system. Each compartment represents a ho-
mogeneous entity within which the entities being modelled are
equivalent. An n-dimensional multi-input linear compartmental
system is a linear state-space model

ẋ(t) = Ax(t) + Bu(t), (2)
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