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a b s t r a c t

In this paper we derive a suboptimal estimation for continuous–discrete bilinear systems. One of the
motivations of this work is that the bilinear system has the simplest structure in the nonlinear class
in some sense. Similar to the Kalman filter, our algorithm includes prediction and updating step. We
show rigorously that our algorithm gives an unbiased estimate, the a-priori estimate approaches to the
conditional expectation exponentially fast, and the posterior estimateminimizes the conditional variance
error in the linear space spanned by the a-priori estimate and the innovation. Our algorithm is also
applicable to solve the nonlinear filtering problems. The efficiency of our method is illustrated by the
cubic sensor problem and Lorenz systemwith discrete observation. The results have been compared with
the extended Kalman filter and the unscented Kalman filter.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

How to get the instantaneous and accurate estimation of the
states of a stochastic system from the polluted measurements by
the noise is of central importance in engineering and this is also
the central problem in the field of filtering. A continuous–discrete
filtering problem is modeled by the following Itô stochastic differ-
ential equation:{
dx(t) = f (x(t))dt + g(x(t))dv(t)
y(tk) = h(x(tk)) + w(tk),

(1.1)

where v(t) is Brownian motion with proper dimension, x(t) ∈ Rn

is the state, 0 = t0 < t1 < · · · < tK = T , y(tk) ∈ Rm is the
measurement, tk, k = 1, 2, . . . , K are instants when the measure-
ments arrive and w(tk) ∈ Rm is white noise. When the function
f (x) and h(x) are linear functions of x and g(x) is constant, we call
(1.1) a linear filtering problem and its study can be traced back
to early 1960s when Kalman [1], Kalman and Bucy [2] published
two most influential papers and proposed the classical Kalman
filter and Kalman–Bucy filter. We refer the readers to the book [3]
for excellent introduction to filtering theory. Though the linear
filtering problem is completely solved in [1,2,4], the nonlinear fil-
tering (NLF) problems are much more complicated and important
in applications since most practical models are nonlinear.
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One class of methods to solve NLF problems is the so-called
global approaches which try to find out the conditional density
function of the states by solving the Duncan–Mortensen–Zakai
(DMZ) equation [5–7]. Based on the DMZ equation, more research
articles follow this direction such as [8–13]. Numerical methods to
solve this problem can also be found such as in [14].

Another class of methods to solve the NLF problems is referred
as local approaches, which construct suboptimal filters in some
sense. There are many approximate methods including unscented
Kalman filter (UKF) [15,16], ensemble Kalman filter [17], parti-
cle filter [18] and the most widely used extended Kalman filter
(EKF) [3,19], which is basically the Kalman–Bucy filter applied to a
linearized system. However, EKF can only performwell if the initial
estimation error and the disturbing noises are small enough due to
its local nature.

Continuous–discrete filter, which is for stochastic differential
systems with sampled measurements, is also of great significance
and hasmany applications such as in tracking and finance since the
measurements always come in discretely. There has been increas-
ing interest in this system and many continuous–discrete filters
can be found in the literatures, such as continuous–discrete EKF [3],
continuous–discrete UKF [15], continuous–discrete Gaussian fil-
ter [20] and continuous–discrete cubature Kalman filter [21]. And
the comparison of these different methods can refer [22].

Our motivations to study the bilinear system are two folds: on
the one hand, many important processes, not only in engineering
but also in socio-economics, biology and ecology, may be modeled
by bilinear systems [23]. On the other hand, the bilinear structure
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seems to be the simplest and closest one to the linear one among
all the nonlinearities. Thus, some well-established techniques can
be extended to bilinear systems [24]. The estimation theory for bi-
linear system can also be used to solve NLF problems. For example,
the nonlinear analytical system can be approximated by a bilinear
system using Carleman approach [25].

Notice that [24] only deals with the continuous–continuous
systems. Recently, the first and the last author of this paper [26,27]
proposed a novel algorithm for solving the continuous NLF prob-
lems based on the idea in [24]. In this paperwe derive a suboptimal
filter for the continuous–discrete bilinear systems. Compared with
the work of Cacace and his collaborators, we consider the filter
rather than state predictor [28] and the bilinear system (3.1) in our
algorithm is more general than that in [29]. We call the estimate
obtained in this paper suboptimal linear estimate (SLE). Similar
to EKF, our algorithm consists of two steps including predicting
and updating. We call the estimate after prediction the a-priori
estimate, while that after updating the posterior estimate. The
suboptimality of our algorithm in the following sense: essentially,
we show that under some mild conditions SLE has the following
properties:

1. Both the a-priori and the posterior estimates are unbiased;
2. The a-priori estimate approaches to the conditional expec-

tation exponentially fast;
3. The posterior estimate minimizes the conditional variance

error in a linear space.

This paper is organized as follows. Our algorithm is described in
Section 2.1. The suboptimality of SLE has been shown rigorously in
Section 2.2. Section 3 presents the application of our algorithm to
representative NLF problems, where we compare the performance
of the proposed filterwith EKF andUKF.Wearrive at the conclusion
in Section 4.

2. Suboptimal algorithm

The bilinear continuous–discrete system considered in proba-
bility space (Ω,F , P) is as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dX(t) =AX(t)dt + Ndt +

b∑
j=1

(BjX(t) + Fj)dWj(t), t ∈ [0, T ],

Y (tk) =CX(tk) + D +

b∑
j=1

GjVj(tk), k = 0, 1, . . . , K ,

(2.1)

where 0 = t0 < t1 < · · · < tK = T ,A ∈ Rn×n,N ∈

Rn×1,Bj ∈ Rn×n, Fj ∈ Rn×1, C ∈ Rm×n,D ∈ Rm×1,G ∈ Rm×1

are constant matrices. X(t) ∈ Rn is the state with the initial value
X0 whose mean is X̄0 and covariance matrix is P̄0, Y (tk) ∈ Rm

is discrete measurement, Vj(tk) ∼ N(0, Rj(tk)), Rj(tk) ∈ R, k =

0, 1, . . . , K , are independent one-dimensional white noises and
Wj(t), j = 1, . . . , b, are independent standard Brownian motions.
Let Ftk be the σ -field generated by the observations, i.e. Ftk ≜
σ {Y (t0), Y (t1), . . . , Y (tk)}. Kronecker algebra is used for concise
notation and derivation. Its properties can be found in [30].

Recall that the probability space (Ω,F ,P) with finite second
moment, with scalar product ⟨x, y⟩ = E[xTy] and norm ∥x∥ :=

E1/2
[xT x] is a Hilbert space, denoted as L2(Ω,F ,P). Suppose that

the state X(t) ∈ L2(Ω,F ,P). In our algorithm, we shall obtain a
linear recursive estimate in the similar fashion of EKF. As explained
in [28], the prediction of the state on the observation history is
indeed a random variable. After the approximation of the condi-
tional expectation of the nonlinear drift term f (xt ) coarsely in EKF,
i.e. E[f (xt )|Ftk−1 ] ≈ f (E[xt |Ftk−1 ]), for t > tk−1, it makes the state
estimate satisfy an deterministic ordinary differential equation.

This is the essential reason why all the estimates in our algorithm
will be treated in a deterministic way. Let us clearly define the
linear recursive estimate of X(t) based on the observation history
{Y (t0), Y (t1), . . . , Y (tk−1)} first:

Definition 2.1. We call X̂(tk|tk) the linear recursive estimate of
X(tk) based on the observation {Y (t0), Y (t1), . . . , Y (tk)}, if

1. The a-priori estimate, denoted as X̂(t|tk−1), t ∈ [tk−1, tk],
is linearly dependent of the previous posterior estimate
X̂(tk−1|tk−1), i.e.

X̂(t|tk−1) = H1(t)X̂(tk−1|tk−1) + H2(t), (2.2)

where H1 and H2 are matrices of proper dimensions;
2. The posterior estimate X̂(tk|tk) lives in the linear space

spanned by 1, the a-priori linear estimate X̂(tk|tk−1) and the
innovation Y (tk) − Ŷ (tk|tk−1), where Ŷ (tk|tk−1) = CX̂(tk|tk−1)
+ D. That is,

X̂(tk|tk) = H3X̂(tk|tk−1) + H4(Y (tk) − Ŷ (tk|tk−1)) + H5, (2.3)

where H3,H4 and H5 are constant matrices of proper dimen-
sions.

2.1. Algorithm

Our algorithm consists of two steps: prediction and updating.
Throughout the process, we assume that

(As) A and Aex are Hurwitz, where Aex :=
∑b

l=1(Bl ⊗ Bl) + In ⊗

A + A ⊗ In.

We state our algorithm first:

(Al-1) Prediction In the interval [tk−1, tk), the a-priori estimate
X̂(t|tk−1) of X(t) based on data {Y (t0), Y (t1), . . . , Y (tk−1)}
satisfies
˙̂X(t|tk−1) =AX̂(t|tk−1) + N, (2.4)

Q̇ (t|tk−1) =AQ (t|tk−1) + Q (t|tk−1)AT (2.5)

+

b∑
j=1

[
BjQ (t|tk−1)BT

j

+

(
BjX̂(t|tk−1) + Fj

)
×

(
BjX̂(t|tk−1) + Fj

)T
]
,

with the initial value X̂(tk−1|tk−1) and Q (tk−1|tk−1) from
previous updating, X̂(t0|t0) := X̄0, and Q (t0|t0) := P̄t0 .

(Al-2) Updating The posterior estimate X̂(tk|tk) of X(tk) based on
the observation history Ftk satisfies

X̂(tk|tk) = X̂(tk|tk−1) + Kk

[
Y (tk) − Ŷ (tk|tk−1)

]
, (2.6)

with Ŷ (tk|tk−1) = CX̂(tk|tk−1)+D, and the gain function Kk
is given by

Kk = Q (tk|tk−1)CT

×

⎡⎣CQ (tk|tk−1)CT
+

b∑
j=1

GjRj(tk)(Gj)T

⎤⎦−1

. (2.7)

Meanwhile, the matrix Q (tk|tk) is updated by

Q (tk|tk) = (In − KkC)Q (tk|tk−1). (2.8)

where In is the identity matrix of dimension n × n.
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