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a b s t r a c t

This paper deals with stability analysis and control design of discrete-time switched linear systems. The
results are based on a new sufficient condition for exponential stabilizability. A performance index that
falls in the context of H2 norm is considered in order to optimize the joint design of a state dependent
switching function and a state feedback control law. All control design conditions are expressed through
linearmatrix inequalities (LMIs). Comparisonswith other available design procedures aremade bymeans
of examples borrowed from the literature. The present procedure is more amenable for control synthesis
purposes and simpler from both theoretical and numerical viewpoints. Three state feedback control
switching strategies are presented. The complexity of the control law is discussed.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Switched systems have been widely studied in the last decades
due to their intrinsic importance from both theoretical and practi-
cal viewpoints. The books [1], and [2] contain complete and useful
results in the general framework of switched systems analysis and
control design. In addition, the survey papers [3,4] and [5] and
the references therein have put in evidence problems and new
theoretical aspects that due to the lack of a complete solution
needed to be further considered.

In this general context, a switched system can be viewed as a
dynamical system constituted of a number of subsystems and a
rule that orchestrates the switching among them, in other words, a
logical strategy that decides the activation of a specific subsystem
at each instant of time. There are twomain classes characterized by
the nature of the switching rule. Indeed, it can be a perturbation or
a control variable to be designedwith specific goals of stability and
performance enhancement.

Several contributions on both classes are available in the liter-
ature. For the first class Refs. [6,7] provide sufficient conditions for
stability based onmultiple Lyapunov functions assuming arbitrary
and bounded dwell time perturbations. This path was completely
characterized by the necessary and sufficient conditions for sta-
bility and performance optimization provided in [8] and [9]. The
main characteristic of these results is that they are well adapted
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for control systems purpose since they are expressed in terms of
LMIs [10]. For the second class, almost the same has occurred.
Sufficient conditions for the existence of a stabilizing switching
rule (state or output dependent) have been proposed in Refs. [11]
for switched affine systems, [12] for sampled-data switched linear
systems, [13,14], and [15] for switched linear systems in discrete-
time, among many others. It is worth mentioning the importance
of the sufficient conditions proposed in [15] where the role of
the convex combination has been pointed out for the first time in
the context of discrete-time switched linear systems. Naturally, in
this vein, necessary and sufficient conditions for stabilizability [16]
and [17] and LQR performance optimization [18–20], and [21] also
appeared.

This paper proposes new sufficient conditions for exponential
stabilizability of discrete-time switched linear systems based on a
quadratic but time-varying Lyapunov function. The conditions are
expressed by linear matrix inequalities and, therefore, are simpler
to solve than others available in the literature. The advantage of
the present stabilizability conditions when compared to the cited
ones is that, due to convexity, they apply to switching function
and state feedback control joint design and can be generalized to
cope with output feedback control and filtering. Moreover, on the
contrary of [13], our approach is able to deal with performance
optimization, being well adapted to handle H2 and H∞ indexes,
see [22] for details.

The notation used throughout is standard. For square matrices,
tr(·) denotes the trace function. For real vectors or matrices, (′)
refers to their transpose. The symbols R and N denote the sets
of real and natural numbers, respectively. For any real symmetric
matrix,X > 0 (X ≥ 0) denotes a positive (semi)definitematrix. The
set composed of the N first positive natural numbers is denoted by
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K = {1, . . . ,N}. The unit simplex composed by all nonnegative
vectors λ ∈ RN such that

∑
j∈Kλj = 1 is denoted by Λ. The ith

column of any identity matrix is denoted by ei. The square norm of
a trajectory z(n), n ∈ N is ∥z∥2

2 =
∑

n∈N∥z(n)∥2 where ∥z(n)∥2
=

z(n)′z(n) is the square of the Euclidean norm. The greatest integer
less or equal to a is ⌊a⌋. A square matrix is said Schur stable if
its eigenvalues belong to the open region |z| < 1 of the complex
plane.

2. Problem statement

Consider a discrete-time switched linear system

x(n + 1) = Aσ x(n) + Eσ w(n) (1)

z(n) = Cσ x(n) (2)

where x(·) ∈ Rnx , w(·) ∈ Rnw and z(·) ∈ Rnz , defined for all
n ∈ N− = N ∪ {−1}, are the state, the exogenous input, and the
controlled output, respectively. It is assumed that (1)–(2) evolves,
for all n ∈ N−, from null1 initial condition x(−1) = 0. The
control action is accomplished by means of a switching function
σ (n) : N− → Kwhich, in some instances, may be state dependent,
that is, σ (n) = v(x(n)) for some function v(·) : Rnx → K. For a
given performance index, the goal is to determine a suboptimal
switching function to the control design problem

inf
σ∈V

J(σ ) (3)

where V is the set of all switching policies assuring that the closed-
loop system (1)–(2) is globally stable. The following definition,
presented in [13], will be useful in the sequel.

Definition 1. The switched linear system x(n + 1) = Aσ x(n) is
exponentially stabilizable if there exist constants c ≥ 0, 0 ≤ µ < 1
and for each x(0) ∈ Rnx a switching trajectory {σ (n)}n∈N such that
∥x(n)∥ ≤ cµn

∥x(0)∥ for all n ∈ N.

It is important to keep inmind that in the context of exponential
stability different switching functions {σ (n)}n∈N can be adopted for
different initial conditions x(0) ∈ Rnx . The next definition is more
stringent by imposing only one switching trajectory for all initial
conditions.

Definition 2. The switched linear system x(n + 1) = Aσ x(n) is
Schur stabilizable if there exist constants c ≥ 0, 0 ≤ µ < 1 and
a switching trajectory {σ (n)}n∈N such that ∥x(n)∥ ≤ cµn

∥x(0)∥ for
all x(0) ∈ Rnx and all n ∈ N.

If Schur stabilizability holds for some {σ (n)}n∈N then it also
holds for the periodic switching law {σp(n)}n∈N with period κ ∈ N
large enough, such that cµκ < 1 and σp(n) = σ (n) for n ∈ [0, κ).
Hence, in this case, periodic stabilizability as defined in [13] also
holds.

The validity of Definition 2 can be tested by x(n + 1) = Aσ x(n)
with a periodic switching law. Consequently, Schur stabilizability
holds if and only if there exists 0 < κ ∈ N finite such that for some
{σ (n)}n=0,...,κ−1 the matrix product A(0,κ−1) = Aσ (κ−1) · · · Aσ (1)Aσ (0)
is Schur stable. The fact that κ ≥ 1 may be taken arbitrarily
large (but finite) puts in evidence that although not equivalent
both stability concepts provided by Definitions 1 and 2 are closely
related. We are now in position to introduce a performance index
that is similar to the celebrated H2 norm of linear time-invariant

1 It is simple to verify that the effect of an impulsive input at n = −1 together
with some given initial condition x(−1) and σ (−1) can be converted to an initial
condition x(0). This adjustment is adopted with no loss of generality only to ease
presentation. This is necessary because the system (1)–(2) is time-varying, see [14].

systems. It is well-definedwhenever the switching functionmakes
the closed-loop switched system exponentially stable, that is
σ ∈ V .

Definition 3. The H2 performance index associated with the
closed-loop switched linear system (1)–(2) with initial condition
x(−1) = 0 is given by

J(σ ) =

nw∑
r=1

∥zr∥2
2 (4)

where zr (n), n ∈ N−, is the output of the system corresponding to
the impulsive input w(n) = erδ(n + 1), for all r = 1, . . . , nw .

Simple algebraic manipulations put in evidence that this per-
formance index can alternatively be calculated from (1)–(2) with
null exogenous input w(n) = 0, ∀n ∈ N, and initial conditions
x(0) = Eσ (−1)er for all r = 1, . . . , nw . As it was already commented,
it is important to keep in mind that in Definition 3, the initial
condition as well as the impulse perturbation have been displaced
by one time interval in order to maintain this property true so as
the performance index becomes simpler to be determined. It is
immediate to see that the LQR index considered in [20] and [21]
can be recast in the context of Definition 3.

2.1. Illustrative example 1

This is an example borrowed from Ref. [7] used to illustrate
some relevant aspects of the system under consideration. It con-
sists of two second order subsystems defined by matrices Ai =

eAciT , i = 1, 2, with T = 0.1 and

Ac1 =

[
0 1
2 −9

]
, Ac2 =

[
0 1

−2 8

]
.

Matrices A1 and A2 are not Schur stable but the matrix product
A(0,1) = A2A1 of length κ = 2 is. The eigenvalues of A′

(0,1)A(0,1) are
{0.7586, 1.0792}. This means that the constraint A′

(0,1)SA(0,1) < S
is satisfied for some matrix S > 0 but it does not admit S = I
as a solution. The first integer ℓ ∈ N such that Aℓ′

(0,1)A
ℓ
(0,1) < I is

ℓ = 148. Hence, there exists A(0,295) such that A′

(0,295)A(0,295) < I
which is a stability test similar to the one proposed in [13]. In this
example, the effect of matrix S is very important to reduce the
length of the matrix product.

3. Switching control design

In this section, a switched linear system with null exogenous
input w(n) = 0, ∀n ∈ N, and arbitrary initial condition x(0) =

x0 ∈ Rnx is considered. In this case, the switched linear system
(1)–(2) reduces to

x(n + 1) = Aσ x(n), x(0) = x0 (5)

z(n) = Cσ x(n) (6)

for all n ∈ N. For a given κ ≥ 1, the sequence {mn}n∈N with generic
term mn = κ⌊n/κ⌋ indicates the index of the first element of
the (⌊n/κ⌋ + 1)th subsequence of length κ in the interval [0, n]
for all n ∈ N. It is used to establish a sufficient condition that
yields a switching function assuring exponential stability andnorm
bounded performance.

3.1. Stabilizing control design

The stability analysis and control design conditions to be pre-
sented afterwards are based on the next theoremand corollary that
constitute the main results of this paper.
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