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a b s t r a c t

This paper deals with transient stability in interconnected micro-grids. The main challenge is to under-
stand the impact of the connectivity of the graph and model nonlinearities on transient and steady-
state behavior of the system as a whole. The contribution of this paper is three-fold. First, we provide
a robust classification of transient dynamics for different intervals of the parameters for a single micro-
grid. We prove that underdamped dynamics and oscillations arise when the damping coefficient is below
a certain thresholdwhichwe calculate explicitly as function of the product between the inertia coefficient
and the synchronization parameter. Second, for interconnected micro-grids, under the hypothesis of
homogeneity, we prove that the transient dynamicsmimics a consensus dynamics.We provide bounds on
the damping coefficient characterizing underdamped and overdamped consensus. Third, we extend the
study to the case of disturbed measurements due to hackering or parameter uncertainties. We introduce
model nonlinearities and prove absolute stability.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

This paper investigates transient stability of interconnected
micro-grids. First, we develop amodel for a singlemicro-grid com-
bining swing dynamics and synchronization, inertia and damping
parameters. We focus on the main characteristics of the transient
dynamics especially the insurgence of oscillations in underdamped
transients. The analysis of the transient dynamics is then extended
to multiple interconnected micro-grids. By doing this, we relate
the transient characteristics to the connectivity of the graph. We
also investigate the impact of the disturbed measurements (due to
hackering or parameter uncertainties) on the transient.

1.1. Main theoretical findings

The contribution of this paper is three-fold. First, for the single
micro-grid, we identify intervals for the parameters within which
the behavior of the transient stability has similar characteristics.
This shows robustness of the results and extends the analysis to
cases where the inertia, damping and synchronization parameters
are uncertain. In particular, we prove that underdamped dynamics
and oscillations arise when the damping coefficient is below a
certain threshold which we calculate explicitly. The threshold is
obtained as function of the product between the inertia coefficient
and the synchronization parameter.
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Second, for interconnectedmicro-grids, under the hypothesis of
homogeneity, we prove that the transient stability mimics a con-
sensus dynamics and provide bounds on the damping coefficient
for the consensus value to be overdamped or underdamped. This
result ismeaningful as it sheds light on the insurgence of topology-
induced oscillations. These bounds depend on the topology of the
grid and in particular on its maximum connectivity, namely, the
maximum number of links over all the nodes of the network. We
also observe that the consensus value changes dramatically with
increasing damping coefficient. This implies that the micro-grid, if
working in islanding mode, can synchronize to a frequency which
deviates from the nominal one of 50 Hz. This finding extends to
smart-gridswith different inertia but same ratio between damping
and inertia coefficient.

Third, we extend the analysis to the case where both frequency
and power flow measurements are subject to disturbances. Using
a traditional technique in nonlinear analysis and control, we iso-
late the nonlinearities in the feedback loop, and analyze stabil-
ity under some mild assumptions on the nonlinear parameters.
The obtained result extends also to the case where the model
parameters like synchronization coefficient, inertia and damping
coefficients are uncertain. This adds robustness to our findings
and proves validity of the results even under modeling errors. The
nonlinear framework accommodates also output limits assuming
that they can be modeled using first and third quadrant sector
nonlinearities.

To corroborate our theoretical findings, a case study from the
Nigerian distribution network is discussed.
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1.2. Related literature

This study leverages on previous contributions of the authors
in [1] and [2]. In [1] the author studies flexible demand in terms
of a population of smart thermostatically controlled loads and
shows that the transient dynamics can be accommodated within
the mean-field game theory. In [2] the author extends the analysis
to uncertain models involving both stochastic and deterministic
(worst-case) analysis approaches. The analysis of interconnected
micro-grids builds on previous studies provided in [3]. Here the
authors link transient stability in multiple electrical generators to
synchronization in a set of coupled Kuramoto oscillators. We refer
the reader to the survey [4]. The connection between Kuramoto
oscillators and consensus dynamics is addressed in [5]. A game
perspective on Kuramoto oscillators is in [6], where it is shown
that the synchronization dynamics admits an interpretation as
game dynamics with equilibrium points corresponding to Nash
equilibria. The observed deviation of the consensus value from
the nominal mains frequency in the case of highly overdamped
dynamics can be linked to inefficiency of equilibria as discussed
in [7]. This study has benefited from some graph theory tools and
analysis efficiently and concisely exposed in [8]. Themodel used in
this paper, which combines swing dynamics with synchronization,
inertia and damping parameters has been inspired by [9]. The
numerical analysis has been conducted using data provided in [10].

This paper is organized as follows. In Section 2, we model a
single micro-grid. In Section 3, we turn to multiple interconnected
micro-grids. In Section 4, we analyze the impact of measurement
disturbances. In Section 5, we provide numerical studies on the
Nigerian grid. Finally, in Section 6, we provide conclusions.

2. Model of a single micro-grid

Consider a single micro-grid connected to the network, refer
to it as the ith micro-grid. Let us denote by Pi the power flow
into the ith micro-grid. Also let fi be the frequency deviation of
micro-grid i andφ a virtual signal representing the frequency of the
mains. From [11, Chapter 3] and [12, Chapter 3.9.2], by applying dc
approximation, the power Pi evolves according to

Ṗi = Tij(φ − fi) = Tijeij, (1)

where Tij is the synchronizing coefficient. This coefficient is ob-
tained as the inverse of the transmission reactance betweenmicro-
grid i and the mains. In other words, the power Pi depends on the
frequency error eij = φ − fi. The physical intuition of this is that in
response to a positive error we have power injected into the ith
micro-grid. Vice versa, a negative error induces power out from
micro-grid i.

The dynamics for fi follows a traditional swing equation:

ḟi = −
Di

Mi
fi +

Pi
Mi
, (2)

where Mi and Di are the inertia and damping constants of the ith
micro-grid, respectively. By denoting fi = x(i)1 , Pi = x(i)2 , φ = x(j)1 ,
and by considering φ as an exogenous input to the ith micro-grid,
the dynamics of the ithmicro-grid reduces to the following second-
order system:[
ẋ(i)1
ẋ(i)2

]
=

⎡⎣−
Di

Mi

1
Mi

−Tij 0

⎤⎦[
x(i)1
x(i)2

]
+

[
0
Tij

]
x(j)1 . (3)

Theorem 1. Dynamics (3) is asymptotically stable. Furthermore, let
Di > 2

√
TijMi then the origin is an asymptotically stable node. Vice

versa, if Di < 2
√
TijMi then the origin is an asymptotically stable

spiral.

Fig. 1. Graph topology indicating smart-grids and interconnections.

Proof. For the first part, stability derives from Tr(A) = −
Di
Mi
, where

Tr(A) is the trace of matrix A and from∆(A) =
Tij
Mi
> 0, where∆(A)

is the determinant of matrix A. Let us recall that stability depends
on the eigenvalues of A and that the expression of the eigenvalues
is given by

λ1,2 =
Tr(A) ±

√
Tr(A)2 − 4∆(A)
2

=
1
2

(
−

Di

Mi
±

√
(
Di

Mi
)2 − 4

Tij
Mi

)
.

(4)

As for the rest of the proof, we know that if Di > 2
√
TijMi then

Tr(A)2 > 4∆(A) and the origin is an asymptotically stable node.
The last case is when Di < 2

√
TijMi which implies Tr(A)2 <

4∆(A) and therefore the origin is an asymptotically stable spiral. □

The above theorem identifies intervals for the parameters
within which the behavior of the transient stability is unchanged.
This provides robustness to our results and extends the analysis to
cases where the inertia, damping and synchronization parameters
are uncertain.

3. Multiple interconnected micro-grids

Let us now consider a network G = (V , E) of interconnected
smart-grids, where V is the set of nodes, and E is the set of arcs.
Fig. 1 displays an example of interconnection topology. Nodes
represent smart-grids units and arcs represent power lines inter-
connections. We use shades of gray to emphasize different levels
of connectivity of the smart-grids. The connectivity of a grid is
indicated by the degree of the node. We recall that for undirected
graphs the degree of a node is the number of links with an extreme
in node i. We denote by di the degree of node i.

Building on model (3) developed for the single grid, we derive
the following macroscopic dynamics for the whole grid:[
Ẋ1

Ẋ2

]
=

⎡⎣−Diag
( Di

Mi

)
Diag

( 1
Mi

)
−L 0

⎤⎦
  

A

[
X1
X2

]
. (5)

In the above set of equations, the block matrix L = [lij]i,j∈{1,...,n}
is the graph-Laplacian matrix:

L :=

⎡⎢⎣ T11 . . . −T1n
. . .

−Tn1 . . . Tnn

⎤⎥⎦ ,
lij =

⎧⎨⎩
−Tij if i ̸= j,∑
h=1,h̸=i

Tih if i = j. (6)

Its row-sums are zero, its diagonal entries are nonnegative,
and its non-diagonal entries are nonpositive. We also recall that
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