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a b s t r a c t

This work provides stability results in the spatial sup norm for hyperbolic–parabolic loops in one spatial
dimension. The results are obtained by an application of the small-gain stability analysis. Two particular
cases are selected for the study because they contain challenges typical ofmore general systems (towhich
the results are easily generalizable but at the expense of less pedagogical clarity and more notational
clutter): (i) the feedback interconnection of a parabolic PDE with a first-order zero-speed hyperbolic
PDE with boundary disturbances, and (ii) the feedback interconnection, by means of a combination of
boundary and in-domain terms, of a parabolic PDEwith a first-order hyperbolic PDE. The first case arises in
the study of the movement of chemicals underground and includes the wave equation with Kelvin–Voigt
damping as a subcase. The second case ariseswhenweapply backstepping to a pair of hyperbolic PDEs that
is obtained by ignoring diffusion phenomena. Moreover, the second case arises in the study of parabolic
PDEs with distributed delays. In the first case, we provide sufficient conditions for ISS in the spatial
sup norm with respect to boundary disturbances. In the second case, we provide (delay-independent)
sufficient conditions for exponential stability in the spatial sup norm.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The use of the notion of Input-to-State Stability (ISS) for finite-
dimensional systems, which was proposed by E.D. Sontag in [1],
allowed the development of small-gain theorems. Starting with
the first nonlinear, generalized small-gain theorem in [2] for sys-
tems described by Ordinary Differential Equations (ODEs), the
small-gain stability analysis has been extended to various kinds of
systems with inputs (see [3]). The extension of ISS to systems de-
scribed by Partial Differential Equations (PDEs; see [4–6]) allowed
the application of small-gain arguments in [7] for systems of inter-
connected PDEs. The recent extension of ISS to PDEswith boundary
disturbances in [8,9] allowed the use of small-gain arguments in [9]
to PDEs with non-local boundary conditions. The use of small-gain
arguments in [9] also showed that small-gain analysis is capable of
providing stability estimates in the spatial sup norm. This feature
can rarely be met in Lyapunov analysis (which is more well-suited
for estimates in Lp spatial norms with 2 ≤ p < +∞).

The study of interconnected PDEs arises naturally in many
applications. Interconnections of PDEs have been studied in [10].
The literature focuses on the study of systems of hyperbolic
PDEs (see [11–14]) and Reaction–Diffusion systems (i.e., systems
of parabolic PDEs; see for instance [15]). ODE–PDE cascades have
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been studied in [16–20], mostly for feedback and observer design
purposes. However, the present work is devoted to the study of
parabolic–hyperbolic PDE loops. Such loops present unique fea-
tures because they combine the finite signal transmission speed
of hyperbolic PDEs with the unlimited signal transmission speed
of parabolic PDEs. Since there are many possible interconnections
that can be considered, it is difficult to give results for a ‘‘general
case’’. Therefore, we focus on two particular cases, which are an-
alyzed in detail, because they contain challenges typical of more
general systems (to which the results are easily generalizable but
at the expense of less pedagogical clarity and more notational
clutter).

The first case considered in this paper is the feedback inter-
connection of a parabolic PDE with a special first-order hyperbolic
PDE: a zero-speed hyperbolic PDE. Thus the action of the hyper-
bolic PDE resembles the action of an infinite-dimensional, spatially
parameterized ODE. However, the study of this particular loop is
of special interest because it arises in an important application:
the movement of chemicals underground ([21], pages 210–216).
Moreover, the study of this particular system can be used for
the analysis of wave equations with Kelvin–Voigt damping (see
also [22–25]). In this case, we provide sufficient conditions for ISS
in the spatial sup norm with respect to boundary disturbances
(Theorem 2.2 and Corollary 2.3). There are no available stability
results in the literature for the wave equation with Kelvin–Voigt
damping in the spatial sup norm (even when boundary distur-
bances are absent).
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The second case considered in this paper is the feedback inter-
connection, bymeans of a combination of boundary and in-domain
terms, of a parabolic PDE with a first-order hyperbolic PDE. The
interconnection is effected by linear, non-local terms. The second
case arises when we apply backstepping to a pair of hyperbolic
PDEs that is obtained by ignoring diffusion phenomena (see [26,
27]). Moreover, the second case arises in the study of parabolic
PDEs with distributed delays of trace terms. Parabolic equations
with delayed terms have also been studied in [28,29]. In this case,
we provide sufficient conditions for exponential stability in the
spatial sup norm with respect to boundary disturbances (Theo-
rem 2.6). This is an important result for control purposes, because
it shows that boundary controllers designedwith the backstepping
methodology are robust with respect to diffusion (which is a high-
order perturbation term). The obtained result is independent of the
speed of the hyperbolic PDE and can be interpreted as a delay-
independent stability condition for the corresponding parabolic
PDE with delayed trace terms.

The present work is structured as follows: the main results of
the paper are stated in Section 2. Section 3 contains the proofs of
all results. Finally, the concluding remarks of the present work are
presented in Section 4.

2. Main results

2.1. Movement of chemicals underground

Certain chemicals are released at position ξ = 0 and enter the
groundwater system. Let φ ∈ (0, 1) be the porosity of the soil,
v ≥ 0 be the velocity of the bulk movement of the groundwater,
c(t, ξ ) and n(t, ξ ) be the concentration of the chemicals dissolved
in water and the sorbed concentration of chemicals in the soil,
respectively, at position ξ ∈ [0, L] (horizontal coordinate) and time
t ≥ 0.

The physical law that allows us to obtain amathematical model
for this process is Fick’s law: the rate per unit area per unit time that
mass of chemicals crosses a plane section through the flow at po-
sition ξ ∈ [0, L] and time t ≥ 0 is equal to −D ∂c

∂ξ
(t, ξ )+φ v c(t, ξ ),

where D > 0 is the diffusion coefficient. Taking into account
that the rate of sorption of chemicals in the soil is proportional
to ∂n

∂t (t, ξ ), the mass balance for the chemical gives the following
equation:

∂c
∂t

(t, ξ ) =
D
φ

∂2c
∂ξ 2 (t, ξ ) − v

∂c
∂ξ

(t, ξ )

−
1
φ

∂n
∂t

(t, ξ ), for (t, ξ ) ∈ (0, +∞) × (0, L). (2.1)

We assume that the concentration of chemicals dissolved in
underground water at ξ = 0 is time-varying and takes values
around a nominal value c0 > 0. At ξ = L the ground meets the
sea, where the concentration of chemicals is zero. Therefore, we
obtain the boundary conditions:

c(t, 0) = c0 + d̃(t)
c(t, L) = 0 , for all t ≥ 0 (2.2)

where d̃ is the variation of the concentration of chemicals dissolved
in water at the source (ξ = 0).

In order to complete the description of themathematical model
of the process, we need an empirical relation that provides quan-
titative information about the rate of sorption of chemicals in the
soil. The rate of sorption of chemicals in the soil at position ξ ∈

[0, L] and time t ≥ 0 has to be a non-decreasing function of c(t, ξ )
and a non-increasing function of n(t, ξ ). The simplest relation that
describes such a dependence is
∂n
∂t

(t, ξ ) = a c(t, ξ ) − bn(t, ξ ), for (t, ξ ) ∈ (0, +∞) × (0, L) (2.3)

where a, b > 0 are constants.

Substituting (2.3) into (2.1) and defining

u1(t, z) := c−1
0 exp

(
−

vLφ
2D

z
)(

c
(
L2φ
D

t, Lz
)

− ceq(Lz)
)

,

u2(t, z) := c−1
0 exp

(
−

vLφ
2D

z
)(

n
(
L2φ
D

t, Lz
)

− neq(Lz)
)

,

to be the scaled deviations from the nominal concentration profiles

ceq(ξ ) =
b
aneq(ξ ) = c0

exp
(

φv
D L

)
−exp

(
φv
D ξ

)
exp

(
φv
D L

)
−1

for ξ ∈ [0, L], we obtain

from (2.1), (2.2) and (2.3) the followingmathematical model of the
process:

∂u1

∂t
(t, z) =

∂2u1

∂z2
(t, z) − K u1(t, z) + r̃bu2(t, z)

∂u2

∂t
(t, z) = ãu1(t, z) − b̃u2(t, z)

for (t, z) ∈ (0, +∞) × (0, 1) (2.4)

u1(t, 0) = d(t)
u1(t, 1) = 0 , for t ≥ 0 (2.5)

where d(t) := c−1
0 d̃

(
L2φ

D t
)
, ã := a L2φ

D , b̃ := b L2φ

D , r := φ−1,

K := L2 v2φ2
+4aD

4D2 . All parameters and variables appearing in model
(2.4), (2.5) are dimensionless.

System (2.4), (2.5) is the feedback interconnection of a parabolic
PDE with a first-order zero-speed hyperbolic PDE (or an infinitely-
parameterized scalar ODE). Its dynamical behavior is very different
from that of a parabolic PDE: to see this notice that system (2.4),
(2.5) may be transformed to a wave equation (or Klein–Gordon
equation) with Kelvin–Voigt damping that may also include vis-
cous damping and stiffness terms

∂2u1

∂t2
(t, z) + (̃b + K )

∂u1

∂t
(t, z)

=
∂3u1

∂z2∂t
(t, z) + b̃

∂2u1

∂z2
(t, z) + b̃ (r̃a − K ) u1(t, z),

for (t, z) ∈ (0, +∞) × (0, 1)

and, conversely, anywave (or Klein-Gordon) equationwithKelvin–
Voigt damping can be transformed to the form (2.4), (2.5).

In what follows, for a given u : ℜ+ × [0, 1] → ℜ we use the
notation u[t] to denote the profile at certain t ≥ 0, i.e., (u[t])(x) =

u(t, x) for all x ∈ [0, 1]. We next provide existence/uniqueness
results for the initial–boundary value (2.4), (2.5) with

u1[0] = u1,0, u2[0] = u2,0 (2.6)

where u1,0, u2,0 are real functions on [0, 1]. Our main result is the
following theorem.

Theorem 2.1 (Existence/Uniqueness). Consider the initial-boundary
value problem (2.4), (2.5), (2.6), where K , r, ã, b̃ ∈ ℜ are constants.
For every u2,0 ∈ C1 ([0, 1]), u1,0 ∈

{
w ∈ H3(0, 1) : w(1) = w′′(0) =

w′′(1) = 0
}

and for every disturbance input d ∈ C2 (ℜ+) with
d(0) = u1,0(0), there exists a unique pair of mappings u1 ∈

C0 (ℜ+ × [0, 1]) ∩ C1 ((0, +∞) × [0, 1]), u2 ∈ C1 (ℜ+ × [0, 1])
with u1[t] ∈ C2 ([0, 1]) for t > 0 satisfying (2.4), (2.5), (2.6).

Theorem 2.1 implies that there exists a set of initial conditions
S ⊆

{
w ∈ C2 ([0, 1]) : w(1) = 0

}
× C1 ([0, 1]) with the following

property:

‘‘For every u0 = (u1,0, u2,0) ∈ S there exists a non-empty set
Φ(u0) ⊆

{
d ∈ C0 (ℜ+) ∩ C1 ((0, +∞)) : d(0) = u1,0(0)

}
such

that for every disturbance input d ∈ Φ(u0) the initial-boundary
value problem (2.4), (2.5), (2.6), there exists a unique pair of
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