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a b s t r a c t

This paper is concerned with pth moment exponential stability problem for a class of stochastic
delay differential equations driven by Lévy processes. Several new stability theorems are obtained by
developing a method—proof by contradiction. Moreover, the results are applied to investigate the pth
moment exponential stability of stochastic neural networks with Lévy noise. In particular, the time-
varying delay in our results is not required to be differentiable, even not continuous. The obtained results
improve greatly some previous works given in the literature. In particular, our method can easily correct
the incorrect proofs appeared in two recent papers. Finally, two examples are provided to show the
effectiveness of the theoretical results.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In recent decades, stochastic differential equations (SDEs) have
been widely studied since they have been successfully applied
in many fields such as physical, biological, engineering, medical,
social sciences, economics, finance and so on. One of the best im-
portantworks in this research field is to discuss the stability of such
systems [1–4]. For example, Dragan and Mukaidani in [5] studied
the stabilization problem for singularly perturbed linear stochas-
tic systems with state-multiplicative white-noise and Markovian
jumping parameters. By introducing the generalized local Lipschitz
condition and one-side linear growth condition, Zhao and Deng
in [6] discussed the stochastic stabilization and destabilization
problem of stochastic systems. In [7], Ito and Nishimura developed
tools to investigate the stability and robustness of cascaded non-
linear stochastic systems based on Lyapunov functions. Mateos-
Núñez and Cortés in [8] discussed the pth moment noise-to-state
stability of SDEswith persistent noise. Formore resultswe refer the
reader to the books [9,10] and the survey paper [11]. Indeed, for a
given SDE, it is very important to determine whether the system is
stable.

On the other hand, time delays are often encountered in some
real engineering problems, and the existence of time delays may
cause oscillation or instability in SDEs, which are harmful to the
applications of SDEs. Therefore, time delays must be taken into ac-
count when studying the stability of SDEs. Usually, SDEs with time
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delays are called stochastic delay differential equations (SDDEs).
The stability of SDDEs has been widely studied in the literature.
For instance, Kang et al. in [12] studied the stability of hybrid
SDDEs with an asynchronous switching controller. Hang and Mao
in [13] discussed themean-square exponential stability and almost
surely exponential stability of neutral SDDEs by using the linear
matrix inequality approach. Hu et al. in [14] investigated the ro-
bust stability and boundedness of nonlinear hybrid SDDEs without
using the linear growth condition. For more results we refer the
reader to [9,10,15–21] and the references therein. As we know, the
stability criteria on SDDEs aremainly including stochastic stability,
asymptotical stability, almost sure stability and exponential stabil-
ity. Generally speaking, the exponential stability is recognized to
the best stability behavior since it not only ensures the stability of
the system but also gives an explicit convergence rate. However, it
is difficult to realize in some real systems. Therefore, it is interest-
ing and challenging to study the exponential stability of SDDEs.

We now introduce some existing works on the exponential
stability of SDDEs. It is known that the powerful technique used in
the study of exponential stability of SDDEs is based on a stochastic
version of the Lyapunov direct method [9,10]. The key of this
method is to find effectively Lyapunov functionals or Lyapunov
functions V combined with the Itô operator LV . The classical
method requires that the Itô operator LV of SDEs is negative,
i.e., LV < 0 (e.g., see the book [9] and the references therein).
For the case of SDDEs, there are more restriction conditions: The
conditions LV (x, y, t) ≤ −λ1|x|p + λ2|y|p, λ1 >

λ2
1−δ

> 0
and τ̇ (t) ≤ δ < 1 are required when the delay τ (t) is time-
varying (e.g., see [10,17,21] and the references therein). However,
these conditions are sometimes too restrictive to fail for some
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Fig. 1. 4th moment of the solution.

real models. In fact, the delays can occur in an irregular fashion
due to the complexity of real systems, which leads to their non-
differentiability (e.g., the signal has to stop propagating for a time
when it encounters an obstacle, but when the obstacle moves
away it will continue to propagate again). Now, let us consider the
following simple linear SDDE: dx(t) = [−3x(t) + x(t − τ (t))]dt +

1.9x(t − τ (t))dB(t), where τ (t) = 0.6|sin t| + 0.5. Obviously, the
stability criteria in the previous literature (e.g. [10,17,21]) fail in
this model since τ (t) = 0.6|sin t|+0.5 is not differentiable. In fact,
even if we allow τ (t) to be differentiable and satisfy τ̇ (t) ≤ δ < 1,
the criteria in [10,17,21] are still very conservative. For example,
taking τ (t) = 0.6 sin t + 0.5, it is clear that δ = 0.6. Then, we take
V (x, t) = |x|2 and compute LV (x, y, t) = 2xT (−3x + y) + y2 ≤

−6|x|2 +2xTy+3.61|y|2 ≤ −5|x|2 +4.61|y|2,which yields λ1 = 5
and λ2 = 4.61. However, λ1 = 5 <

λ2
1−δ

=
4.61
1−0.6 = 11.525,

which implies that the criteria in [10,17,21] fail in this case. In
fact, this model is indeed 4th moment exponentially stable, and
Fig. 1 further shows the stability. Naturally, an interesting question
arises: under what conditions can SDDEs realize the pth moment
exponential stability when τ (t) is not differentiable? To the best
of our knowledge, up to now, there has been few results on this
problem.

Motivated by the above discussion, in this paper we are in-
terested in the pth moment exponential stability of SDDEs. Our
aim is to establish some new stability results by developing a
method—proof by contradiction. To make the results allow more
general real models, we also consider the effect of Lévy noise. In
fact, many real random events like the fluctuations in the financial
markets and large disasters in life sciences are not described by the
Brownmotion. It is recognized that Lévy noise can described these
complex random evens but it makes the analysis more difficult
owing to the discontinuity of its sample paths [18–22]. In this
paper, we attempt to overcome this difficulty and obtain several
novel stability theorems. Compared with the previous results, the
contributions of this paper lie in three aspects as follows.

(1) Without additional restrictive differentiable conditions on
the time-varying delay, the pth moment exponential stability
problem for a class of SDEswith time-varying delays has been stud-
ied. The time-varying delay in the previous literature is required to
be differentiable and the bound of its derivative is also required to
be less than 1 (e.g., see [10,15,17,21,23,24]).

(2) We develop a method—proof by contradiction, which is
different from those used in [10,15,17,21,23–25]. Moreover, the
Gronwall inequalitymethodused in [17,25] iswrong (see Remark 4
in detail). In fact, ourmethod can easily correct the incorrect proofs
appeared in [17,25].

(3) Lévy noises have been considered in this paper. In particular,
we consider the effects of both ‘‘small jump’’ and ‘‘large jump’’.
However, Lévy noises were ignored in [10,15,17,23–25].

The remainder of this paper is organized as follows. In Section 2,
we introduce the model, notations and some necessary assump-
tions. In Section 3, we establish several new stability theorems
by developing a novel method and apply our results to stochastic
neural networks. In Section 4, we use two examples to show
the effectiveness of the obtained results. Finally, in Section 5, we
conclude this paper with some general remarks.

2. Model, notations and assumptions

Notations. Throughout this paper, we will use the following
notations. Rd denotes the d-dimensional Euclidean space, and |x|
denotes the Euclidean norm of a vector x. Take R = (−∞, +∞)
and R+ = [0, +∞). The superscript ‘‘T’’ denotes the transpose
of a matrix or vector, and trace (·) denotes the trace of the corre-
sponding matrix. For any matrix A, λmax(A) (respectively, λmin(A))
denotes the largest (respectively, smallest) eigenvalue of A. a∨b =

max{a, b}.
Let B = (B(t) = (B1(t), . . . , Bm(t))T , t ≥ 0) be an m-

dimensional Brownian motion defined on a complete probability
space (Ω,F, P) with a natural filtration {Ft}t≥0. Also, let τ > 0 and
C([−τ , 0];Rd) denote the family of continuous functions φ from
[−τ , 0] to Rd with the uniform norm ∥φ∥τ = sup−τ≤θ≤0|φ(θ )|. Let
p > 0 and denote by LpF0

([−τ , 0];Rd) the family of all F0 mea-
surable, C([−τ , 0];Rd)-valued stochastic variables φ = {φ(θ ) :

−τ ≤ θ ≤ 0} such that E ∥φ∥
p
τ < ∞, where E stands for

the correspondent expectation operator with respect to the given
probability measure P.

In this paper, we will discuss the following stochastic delay
differentiable equation driven by Lévy processes:

dx(t)
= f (x(t), x(t − τ (t)), t)dt

+ g(x(t), x(t − τ (t)), t)dB(t)

+

∫
|z|<c

H1(x(t−), x(t − τ (t))−, t, z)Ñ(dt, dz)

+

∫
|z|≥c

H2(x(t−), x(t − τ (t))−, t, z)N(dt, dz), (1)

where the initial data x0 = ξ = {ξ (θ ), −τ ≤ θ ≤ 0} ∈

LpF0
([−τ , 0];Rd), x(t−) = lims↑tx(s), the mappings f : Rd

× Rd
×

R+ → Rd, g : Rd
×Rd

×R+ → Rd×m denotes the space of all real-
valued d×mmatrices,Hi : Rd

×Rd
×R+ ×Rd

→ Rd(i = 1, 2), and
the constant c ∈ (0, ∞] is the maximum allowable jump size. τ (t)
is a time-varying delay and satisfies 0 ≤ τ (t) ≤ τ . N is a Poisson
random measure defined on R+ × (Rd

− {0}) with compensator
Ñ and intensity measure ν. We assume that N is independent of
B and ν is a Lévy measure such that Ñ(dt, dz) := N(dt, dz) −

ν(dz)dt and
∫
Rd−{0}(|z|

p ⋀
1)ν(dz) < ∞. Usually, the pair (B,N)

is called a Lévy noise,
∫

|z|<c H1(x(t−), x(t − τ (t))−, t, z)Ñ(dt, dz) is
called ‘‘small jump’’ and

∫
|z|≥c H2(x(t−), x(t − τ (t))−, t, z)N(dt, dz)

is called ‘‘large jump’’.
To ensure that system (1) has a unique solution, throughout this

paperwe assume that the functions f , g,H1 andH2 satisfy the local
Lipschitz condition, f (0, 0, t) = 0, g(0, 0, t) = 0, H1(0, 0, t, z) = 0
for all t ∈ R+ and |z| < c , and H2(0, 0, t, z) = 0 for all t ∈ R+

and |z| ≥ c . Under these conditions, it follows from [20] and [22]
that (1) has a unique solution x(t; ξ ) on t ≥ t0 − τ . In particular,
x(t; ξ ) = 0 for all t ≥ t0−τ corresponding to the initial data ξ ≡ 0,
which is often called the trivial solution.
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