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a b s t r a c t

This work focuses on the design of a new class of economic model predictive control (EMPC) systems
for nonlinear systems that address simultaneously the tasks of economic optimality, safety and closed-
loop stability. This is accomplished by incorporating in the EMPC an economics-based cost function and
Control Lyapunov-Barrier Function (CLBF)-based constraints that ensure that the closed-loop state does
not enter unsafe sets and remainswithin awell-characterized set in the system state-space. The new class
of CLBF-EMPC systems is demonstrated using a nonlinear chemical process example.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Since operational efficiency and increasing energy consump-
tion are becoming crucially important issues in the chemical and
petrochemical industry, a model-based feedback control strategy,
economic model predictive control (EMPC), has been proposed as
an efficientmethod to address process control problems integrated
with dynamic economic optimization of the process (e.g., [1–4]).
EMPC allows the chemical process to be operated in a time-varying
fashion (off steady-state) to dynamically optimize process eco-
nomic performance, and incorporates constraints that guarantee
closed-loop stability and feasibility within an explicitly-defined
estimate of the closed-loop stability region under an appropriate
control law (e.g., a Lyapunov-based feedback control law).

On the other hand, process operational safety is of significant
importance in the chemical process industries due to the disas-
trous consequences unsafe operation has for both lives and prop-
erty [5,6]. Despite the widely-used safety protection instruments
applied in industry (e.g., alarm systems, emergency shut-down
systems, and safety relief devices), the potential for unsafe pro-
cess operation caused bymulti-variable interactionsmotivates the
development of improved process design and process operational
safetymethods. Several recentworks have proposed amethod that
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combines control and safety within a systems framework using
a function termed the Safeness Index that indicates the relative
safeness of the process states (e.g., [7]). It has been shown that
under the EMPC integrated with Safeness Index function-based
constraints, closed-loop stability and operational safety of non-
linear chemical process systems can be achieved. At this stage,
however, the problem of incorporating safety region constraints
in EMPC to deal with process operational safety and ensuring the
feasibility of the resulting EMPC a priori has not been studied.

Recently, a control method termed Control Lyapunov-Barrier
Function (CLBF)-based control (e.g., [8,9]) has been proposed for
the control system design that accounts for both closed-loop sta-
bility and safety. Typically, CLBFs can be formulated through the
weighted average of a Control Lyapunov Function (CLF) and a
Control Barrier Function (CBF), and therefore they possess similar
stabilizability and safety properties to those associated with the
CLF and CBF fromwhich they can be derived. In a recent work [10],
a CLBF was combined with tracking MPC to drive the state of a
closed-loop nonlinear system to its set point while avoiding the
unsafe region in state-space. At this stage, however, it remains an
open issue to incorporate a CLBF into EMPCdesign to obtain closed-
loop stability, process operational safety, and optimal economic
benefits simultaneously.

These safety and stability considerations motivate the devel-
opment of CLBF-based EMPC that integrates a Control Lyapunov-
Barrier Functionwith EMPC to account for input constraints, safety
considerations, and the stability of the closed-loop system. The
proposed methodology is applied to a nonlinear chemical process
example to demonstrate the ability of the CLBF-EMPC to operate
the process in an economically optimal manner while avoiding an
unsafe region in the state-space.
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2. Preliminaries

2.1. Notation

The notation |·| is used to denote the Euclidean norm of a
vector. xT denotes the transpose of x. The notation Lf V (x) denotes
the standard Lie derivative Lf V (x) :=

∂V (x)
∂x f (x). Set subtraction is

denoted by ‘‘\’’, i.e., A \ B := {x ∈ Rn
| x ∈ A, x ̸∈ B}. ∅ signifies the

null set. Given a set D ⊂ Rn, we denote the boundary of D by ∂D,
and the closure ofD byD.Bβ (ϵ) := {x ∈ Rn

| |x−ϵ| < β} is an open
ball around ϵ with radius of β . The function f (·) is of class C1 if it
is continuously differentiable in its domain. A continuous function
α : [0, a) → [0, ∞) is a class K function if it is strictly increasing
and is zero onlywhen evaluated at zero. A scalar function V : Rn

→

R is proper if the set {x ∈ Rn
| V (x) ≤ k} is compact ∀ k ∈ R, or

equivalently, V is radially unbounded [11].

2.2. Class of systems

The class of continuous-time nonlinear systems considered is
described by the following systemof first-order nonlinear ordinary
differential equations:

ẋ = f (x) + g(x)u + h(x)w, x(t0) = x0 (1)

where x ∈ Rn is the state vector, u ∈ Rm is the manipulated input
vector, and w ∈ W is the disturbance vector, where W := {w ∈

Rq
| |w| ≤ θ, θ ≥ 0}. The control action constraint is defined by

u ∈ U := {umin
i ≤ ui ≤ umax

i , i = 1, . . . ,m}. f (·), g(·), and h(·)
are sufficiently smooth vector and matrix functions of dimensions
n × 1, n × m, and n × q, respectively. Throughout the manuscript,
the initial time t0 is taken to be zero (t0 = 0), and it is assumed
that f (0) = 0, and thus, the origin is a steady-state of the nominal
(i.e.,w(t) ≡ 0) system of Eq. (1) (i.e., (x∗

s , u
∗
s ) = (0, 0), where x∗

s and
u∗
s represent the steady-state state and input vectors, respectively).

2.3. Control Lyapunov-Barrier Function (CLBF)

In this work, we develop an economic model predictive control
design that utilizes a Control Lyapunov-Barrier Function [12] in
designing the constraints tomaintain the closed-loop state in a safe
operating region at all times in the following sense:

Definition 1. Consider the system of Eq. (1) with input constraints
u ∈ U , and an open set D in state-space within which it is unsafe
for the system to be operated. If there exists a control law u ∈ U
such that the state trajectories of the system for any initial state
x(0) = x0 ∈ U ⊂ Rn satisfy x(t) ∈ U , ∀ t ≥ 0, where U ∩D = ∅, we
say that process operational safety is achieved in the sense that the
control law u maintains the process state within a safe operating
region U at all times.

Based on the original Control Lyapunov-Barrier Function
(CLBF) [12] that was developed for the nominal system of Eq. (1)
with w(t) ≡ 0, in this manuscript, we propose a constrained CLBF
that accounts for the input constraints u ∈ U in the system of
Eq. (1), and is stabilizing even in the presence of small bounded
disturbancesw(t). Specifically, the definition of a constrained CLBF
is as follows:

Definition 2. Given a set of unsafe points in state-spaceD (i.e., the
unsafe region), a proper, lower-bounded and C1 functionWc(x): Rn

→ R is a constrained CLBF if it has a minimum at the origin and

satisfies the following properties:

Wc(x) > ρc, ∀ x ∈ D ⊂ φuc (2a)
LfWc(x) < 0,
∀ x ∈ {z ∈ φuc \ (D ∪ {0} ∪ Xe) | LgWc(z) = 0} (2b)
Uρc := {x ∈ φuc | Wc(x) ≤ ρc} ̸= ∅ (2c)

φuc \ (D ∪ Uρc ) ∩ D = ∅ (2d)

where ρc ∈ R and Xe := {x ∈ φuc \ (D ∪ {0}) | ∂Wc(x)/∂x = 0}
is a set of states where LfWc(x) = 0 due to ∂Wc(x)/∂x = 0. φuc is
defined to be the union of the origin, Xe and the set where the time-
derivative of Wc(x) is negative with constrained input: φuc = {x ∈

Rn
| Ẇc(x(t), u(t)) = LfWc +LgWcu < 0, u = Φ(x) ∈ U}∪{0}∪Xe.

Φ(x) is a nonlinear feedback control law, which will be discussed
in detail in the next subsection.

2.4. Stabilization and safety via CLBF

We assume that there exists a feedback control law u = Φ(x) ∈

U (e.g., the universal Sontag control law [13]) such that the state of
the closed-loop nominal system of Eq. (1) is bounded in a level set
of Wc(x) embedded in an open neighborhood D that includes the
origin in its interior in the sense that there exists a C1 constrained
Control Lyapunov-Barrier function Wc(x) that has a minimum at
the origin and where the following inequalities hold for all x ∈ D:

α1(|x|) ≤ Wc(x) − ρ0 ≤ α2(|x|), (3a)

∂Wc(x)
∂x

F (x, Φ(x), 0) ≤ 0, (3b)

⏐⏐⏐⏐∂Wc(x)
∂x

⏐⏐⏐⏐ ≤ α4(|x|) (3c)

whereαj(·), j = 1, 2, 4 are classK functions, andWc(0) = ρ0 is the
global minimum value ofWc(x) in D. F (x, u, w) is used to represent
the system of Eq. (1) (i.e., F (x, u, w) = f (x) + g(x)u + h(x)w).
By continuity and the smoothness assumed for f , g and h, there
exists a positive constant M such that |F (x, u, w)| ≤ M holds
for all x ∈ Uρc , u ∈ U and w ∈ W . Also, there exist positive
constants Lx, Lw, L′

x, L
′
w such that the following inequalities hold for

all x, x′
∈ Uρc , u ∈ U , and w ∈ W :

|F (x, u, w) − F (x′, u, 0)| ≤ Lx|x − x′
| + Lw|w| (4a)⏐⏐⏐⏐∂Wc(x)

∂x
F (x, u, w) −

∂Wc(x′)
∂x

F (x′, u, 0)
⏐⏐⏐⏐

≤ L′

x|x − x′
| + L′

w|w| (4b)

The following theorem provides sufficient conditions under which
the existence of a constrained CLBF of Eq. (2) for the system of
Eq. (1) under the control law u = Φ(x) ∈ U guarantees that the
solution of the system of Eq. (1) always stays in a safe operating
region.

Theorem 1. Consider that a constrained CLBF Wc(x) : Rn
→ R that

has a minimum at the origin andmeets the conditions of Eq. (2), exists
for the nominal system of Eq. (1) with w(t) ≡ 0 subject to input
constraints, defined with respect to a set of unsafe points D in state-
space. The feedback control law u = Φ(x) ∈ U guarantees that the
closed-loop state stays in Uρc for all times for x(0) = x0 ∈ Uρc , and
does not enter D for x0 ∈ φuc\D .

Proof. We first prove that if x0 ∈ Uρc , the closed-loop state x(t) is
always bounded in Uρc and never enters D, for all t ≥ 0. Based on
the definition of φuc , it is trivial to show that Ẇc remains negative
within the set Uρc\(Xe ∪ {0}) using the controller u = Φ(x) ∈ U .
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