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a b s t r a c t

This paper is concerned with the problem of gain-scheduled controller design for parameter-varying
discrete-time systems. In practice, the scheduling parameters are only availablewith limited accuracy due
to themeasurement errors. In the present paper, these uncertainties are systematically taken into account
for the gain-scheduled controller synthesis to achieve improved performance in practical situations. It is
assumed that all the matrices of the state-space model of the plant have a homogeneous polynomial
dependency of arbitrary degree on the scheduling parameters. The merit of the proposed method is
its capability in dealing with the measurement error less conservatively than available approaches
while it can also encompass the traditional methods employing the exact scheduling parameters in a
less conservative manner. A comprehensive numerical example demonstrates the effectiveness of the
proposed method.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Gain-scheduling is a methodology to tackle the problem of
designing controller for a nonlinear systemwith widespread prac-
tical engineering applications ranging from aerospace to process
control [1–3]. As a special case, this strategy is applicable for the
control of linear parameter-varying (LPV) systems, a subclass of
nonlinear systems which are modeled as parameterized linear
systems whose parameters are time-varying. Some key results
related to gain-scheduled control for continuous-time systems
can be found in [4–10]. In this note, the gain-scheduled con-
trol design for discrete-time systems is investigated. In most of
the existing approaches, the scheduling parameters are modeled
through polytopic representation, a convex hull of known ver-
tices. Then, the synthesis procedure is constructed based on the
well-known Lyapunov theory [11–16]. Due to this theory, the
performance of a closed-loop system comprising of an LPV sys-
tem and a gain-scheduled controller can be evaluated by some
parameter-dependent Linear Matrix Inequalities (LMIs) [17]. From
the controller design point of view, generally an invertible non-
linear transformation is employed to cast the design problem in
terms of solutions to a set of LMIs [11,12]. In this case, one of the
most critical issues in the control design for LPV systems is the
choice of the Lyapunov function. It is a trivial fact that employing
parameter-dependent Lyapunov functions considerably reduces
the related conservatism but at the expense of more computa-
tional complexity. Besides that, by introducing auxiliary (slack)
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variables in the LMI setting of the performance assessment condi-
tions through reciprocal application of Elimination lemma [18], the
related conservatism can efficiently be decreased, see e.g. [13]. In
its general form, the obtained performance conditions are infinite-
dimensional LMI problems whose solutions are known to be NP-
hard. At the expense of some conservatism, one possible way is to
impose a special structure on the parameter-dependent Lyapunov
matrix P(θ ) to obtain a tractable optimization problem [14]. In this
way, a systematic procedure to tackle the robust stability analysis
for uncertain linear time-invariant systems has been introduced
in [19], and subsequently the same method is employed to study
the control problemof LPV systems [11,13]where by exploiting the
geometric properties of polytopic domains, homogeneous polyno-
mially parameter-dependent solutions of arbitrary degree on the
scheduling parameters are sought.

In reality, the exact scheduling parameters are not available. Al-
though, this fact has been neglected inmost of the previouslymen-
tionedmethods. The scheduling parameters are eithermeasured or
estimated and thus there always exist some inherent uncertainties
which potentially could have a great effect on the closed-loop per-
formance. Several researchers have alreadydirected their attention
to this problem. Most of the recent publications which consider
the scheduling parameter errors are devoted to the continuous-
time LPV systems, see e.g. [9,10] and references therein. Under
the existence of uncertainties in the available scheduling param-
eters for discrete-time LPV systems, gain-scheduled state feed-
back controller [20], fixed-structure controller design [15], and
gain-scheduled output feedback controller synthesis [12,21] have
been proposed. The stabilization problem is tackled in [21] where
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the scheduling parameters are available with a finite accuracy.
The presented method in [15] is an iterative design procedure
constructed based on the concept of Strictly Positive Realness
(SPRness) of transfer functions. The main drawback of the method
is that a set of initial controllers should be provided for the ini-
tialization of the iterative procedure by any other method. The ap-
proach of [12] is an extension of the methods presented in [11,22]
that employs a constant auxiliary variableG in the so-called dilated
LMI characterization for performance analysis of discrete-time LPV
systems.

Motivated by the above, we consider the problem of gain-
scheduled output feedback control design for discrete-time LPV
systems when the exact values of scheduling parameters are not
available. Parameter-dependent Lyapunov function and auxiliary
variables, with polynomial dependence of arbitrary degrees on the
scheduling parameters, are exploited. An LMI-based method for
the synthesis of a rationally parameter-dependent gain-scheduled
controller is presented. Then, an iterative convex optimization
scheme is provided to improve this controller. Contrary to the
methods of [12,15], we assume that all of the matrices of the state
space representation of LPV system to be polynomially parameter-
dependent. Additionally, employing parameter-dependent auxil-
iary variables, contrary to the methods of [11,12], is obviously
promising for achieving less conservative results. By rigorous the-
oretical proof, we have shown that some available approaches are
special cases of the proposed method, namely, our conditions can
reduce to those in [11,12] under special cases. This implies that the
proposed conditions can give less conservative design.

The notation is fairly standard. In this paper, 0n×m is an n × m
zero matrix and In is an n × n identity matrix. The subscript for
the dimension may be dropped if the sizes of matrices are clear
from the context. Moreover, Rn×m is the set of n × m real matrices
and ⟨A⟩ is a shorthand notation for A + A′. In a symmetric matrix,
⋆ denotes the transpose of an off-diagonal block. For the ease
of notation, diag(·) is employed to represent the block diagonal
concatenation of input arguments. The corresponding 2-norm is
defined as ∥x∥2

2 =
∑

∞

k=0x(k)
′x(k).

2. Preliminaries

Consider the following finite-dimensional discrete-time LPV
system:

x(k + 1) = A(θ̆ (k))x(k) + B(θ̆ (k))w(k), x(0) = 0

z(k) = C(θ̆ (k))x(k) + D(θ̆ (k))w(k) (1)

where x ∈ Rn is the state vector, w ∈ Rm is the exogenous input,
z ∈ Rq is the system output. All systemmatrices are appropriately
dimensioned real matrices. They are assumed to be bounded for
k ≥ 0 and have a polynomial parameter dependency on the
scheduling parameter θ̆ (k) ∈ Rv .

Suppose that the aforementioned system is exponentially sta-
ble. Then η is an upper bound on the induced l2-gain performance
of the LPV system (1) if

sup
w ̸=0, w∈l2

∥z∥2

∥w∥2
< η (2)

for all allowable scheduling parameter trajectories. w is assumed
to be a bounded energy signal. In virtue of bounded real lemma, an
upper bound on the induced l2-gain performance can be character-
ized. In what follows, the step index k is omitted for the clarity and
for the ease of notation θ̆ (k + 1) is denoted by θ̆+.

To proceed further, we need the following lemma.

Lemma 1. If there exist a scalar λ and parameter-dependent matrices
P(θ̆ ) = P(θ̆ )′ > 0 and G(θ̆ ) such that

• [
−P(θ̆ ) + ⟨G(θ̆ )⟩ ⋆

λG(θ̆ )′ − A(θ̆ )G(θ̆ ) P(θ̆+) − ⟨λA(θ̆ )G(θ̆ )⟩

]
> 0. (3)

holds for all allowable scheduling parameter trajectories, then
the system given by (1) is exponentially stable.

• ⎡⎢⎢⎣
−P(θ̆ ) + ⟨G(θ̆ )⟩ ⋆ ⋆ ⋆

λG(θ̆ )′ − A(θ̆ )G(θ̆ ) P(θ̆+) − ⟨λA(θ̆ )G(θ̆ )⟩ ⋆ ⋆

−C(θ̆ )G(θ̆ ) −λC(θ̆ )G(θ̆ ) ηI ⋆

0 B(θ̆ )′ D(θ̆ )′ ηI

⎤⎥⎥⎦
> 0. (4)

holds for all allowable scheduling parameter trajectories, then
in addition to the exponential stability, an upper bound η > 0
on the induced l2-gain performance is guaranteed.

Proof. See Appendix. □

The aforementioned lemma provides so-called dilated LMI
characterizations for stability and performance of discrete-time
LPV systems. The dilation of the LMI characterizations by intro-
ducing auxiliary variables yields decoupling between the Lyapunov
variables and the controller parameters that facilitates the use
of parameter-dependent Lyapunov functions. Moreover, as it is
shown in [22–24], the provided free dimensions in the solution
space by the employed auxiliary variables may reduce the conser-
vatism of the LMI optimization problems. In Lemma 1, both G(θ̆ )
and λ play the role of the auxiliary variables. In a special case by
considering λ = 0, the conditions in Lemma 1 are converted to the
provided dilated LMIs in [25]. This implies that Lemma 1 provides
more free dimension in the solution space and may lead to less
conservative results by performing a line search for λ.

3. System description and problem definition

Consider the following linear parameter-varying discrete-
time system with v independent scalar parameters θ (k) ≜[
θ1(k) · · · θv(k)

]′ as follows:

xp(k + 1) = Ap(θ (k))xp(k) + B1(θ (k))w(k) + B2(θ (k))u(k),
xp(0) = 0

z(k) = C1(θ (k))xp(k) + D1(θ (k))w(k) + D2(θ (k))u(k) (5)
y(k) = C2(θ (k))xp(k) + Dy(θ (k))w(k)

where xp(k) ∈ Rn is the state vector, w(k) ∈ Rm is the disturbance
input, z(k) ∈ Rq is the performance output, y(k) ∈ Rr is the
measured output and u(k) ∈ Rp is the control input. It is assumed
that all systemmatrices, with appropriate dimensions, are real and
bounded and to be polynomialwith respect to θi(k). The scheduling
parameter θ (k) is assumed to lie in a hyper-rectangle, or equiva-
lently

θ i ≤ θi(k) ≤ θ i, i = 1, . . . , v (6)

with the a priori known values of θ i, θ i for i = 1, . . . , v. Addition-
ally, the parameter deviation for one sampling step is also assumed
to be bounded as follows:

|θi(k + 1) − θi(k)| ≤ ∆i, i = 1, . . . , v (7)

with the a priori known values of ∆i for i = 1, . . . , v. This directly
leads to the fact that the admissible region for (θi(k), θi(k + 1))
would be a polytope with six vertices as it is shown in [12].
Consequently, θ (k) and θ (k + 1) can be modeled through multi-
simplex framework, i.e. the Cartesian product of simplexes [26].
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