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a b s t r a c t

This paper presents versions of integral input-to-state stability and integral input-to-integral-state
stability for nonlinear sampled-data systems, under the low measurement rate constraint. In particular,
we compensate the lack of measurements using an estimator approximately reconstructing the current
state. Interestingly, under certain checkable conditions, we establish that a controller that semiglobally
practically integral input-to-(integral-)state stabilizes an approximate discrete-timemodel of a single-rate
nonlinear sampled-data system, also stabilizes the exact discrete-time model of the nonlinear sampled-
data system in the same sense implemented in a dual-rate setting. Numerical simulations are given to
illustrate the effectiveness of our results.

© 2018 Published by Elsevier B.V.

1. Introduction

Sampled-data systems consist of a continuous-time plant/
process controlled by a digital controller interfaced through
analogue-to-discrete (A/D) and discrete-to-analogue (D/A) con-
verters. When the plant is nonlinear, analysis and design of
sampled-data systems present significant challenges and have at-
tracted significant research attention; e.g., [1–5].

Sampled-data systems can be designed by emulation [6–8] or in
discrete-time [9–11]. In the emulation approach, a continuous-time
controller is first designed for the continuous-time plant and then
the controller is discretized using exiting techniques for numerical
integration. In the discrete-time approach, on the other hand, first
the plant model is discretized and then a controller is designed for
the resulting discrete-time plant.

In general, the emulation approach presents the disadvantage
that requires high sampling rates in order to recover the properties
of the analog design including stability and desired performance.
The discrete-time approach can usually offer similar results at
lower sampling rates compared to emulation-based controllers.
Unfortunately, however, finding the exact discrete-time model of
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a continuous-time plant requires solving an initial value problem
whose solution does not exist in closed-form for any practical non-
linear plant model. A remedy for this issue is to conclude stability
properties and/or system performance of the exact discrete-time
model from an approximate model of the system. This treatment
has received considerable attention over the last two decades;
e.g., [12–15]. It should be noted that there have been other ap-
proaches such as [1,4], where smoothness conditions on themodel
describing the system are required.

In the discrete-time approach, it is usually assumed that all
signals in the loop are sampled regularly at the same sampling
rate. Practically speaking, however, the use of different sampling
rates for inputs and outputs is highly desirable or evenmandatory.
A dual-rate sampled-data stabilization problem is studied in [16],
where low measurement rates are considered and a multi-rate
controller, that approximates state trajectories between samples,
is proposed. In [17], the work [16] is extended to include the
effect of disturbances, using the concept of input-to-state stability
(ISS) [18]. Furthermore, extensions to multi-rate output feedback
control problem are reported in [19,3].

Major outcome of this body of work is the understanding of
under what conditions stability properties of a digital design based
on an approximate discrete-time model of a sampled-data sys-
tem, are also true for the exact (not available to the designer)
discrete-time model of the system. Particularly relevant to this
work is the preservation of the important notions of ISS, and
integral input-to-state stability (iISS) [20]. Both concepts are of
fundamental importance in control theory. Informally, ISS and iISS
capture the notion that the system state remains small, regarding
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the initial conditions, provided that the input (ISS) or integral of
the input (iISS) is small. In [13], the authors consider single-rate
sampled-data systems and provide sufficient conditions under
which a discrete-time controller that input-to-state stabilizes an
approximate discrete-time model of a nonlinear plant with distur-
bances also input-to-state stabilizes the exact discrete-time plant
model. In [17], the authors consider low measurement frequency
restriction and generalize the results in [13] to the dual-rate case.
Integral versions of ISS, called semiglobal practical integral input-
to-state stability (SP-iISS) and semiglobal practical integral input-
to-integral-state stability (SP-iIiSS), of single-rate sampled-data
systems via approximate models are considered in [21].

In this paper, our main interest is the study of dual rate iISS
nonlinear sampled-data systems. As we will see later, this is a
source of difficulties with which this work is concerned. Specially,
we use an approximate discrete-time model of the plant to esti-
mate inter-sampled values used by the controller working at the
higher rate. Then we show SP-iI(i)SS for the exact discrete-time
model of the dual-rate sampled-data based on checkable sufficient
conditions obtained from a single-rate approximate model of the
sampled-data system. As a matter of fact, analysis of a single-rate
sampled-data system is, in general, much easier than that for its
multi-rate counterpart. Therefore, our results may be preferable to
the designer as we conclude stability of a dual-rate system from
a single-rate model of the system. Eventually, we illustrate the
effectiveness of our results via a numerical example.

The rest of this paper is organized as follows: Section 2 defines
the notation used throughout the paper. Problem statement is
given in Section 3 and the main results are provided in Section 4.
An illustrative example is given in Section 5. Finally, concluding
remarks are provided as the last section.

2. Notation

Throughout the paper, R≥0(R>0) and Z≥0(Z>0) are the nonneg-
ative (positive) real and nonnegative (positive) integer numbers,
respectively. We denote the standard Euclidean norm by |·|. A
function ρ : R≥0 → R≥0 is positive definite (ρ ∈ PD) if it is
continuous, zero at zero and positive elsewhere. A positive definite
function α is of class K (α ∈ K) if it is strictly increasing. It is of
class K∞ (α ∈ K∞) if α ∈ K and also α(s) → +∞ if s → +∞.
A continuous function β : R≥0 × R≥0 → R≥0 is of class KL
(β ∈ KL), if for each s ≥ 0, β(·, s) ∈ K, and for each r ≥ 0,
β(r, ·) is decreasing and lims→+∞β(r, s) → 0. For a given function
w : R≥0 → Rp, wT [k] represents the restriction of the function
w(·) to the interval [kT , (k + 1)T ], where k ∈ Z≥0 and T > 0.
Given γ ∈ K and a measurable function w : R≥0 → Rd, we define
|w|γ :=

∫
+∞

0 γ (|w(s)|)ds. We denote the set of all functions with
|w|γ < +∞ by Lγ . Also, if |w|γ < r for some r ∈ R>0, we write
w ∈ Lγ (r). Similarly, let w : R≥0 → Rd be a measurable function
such that |w|∞ := supt≥0|w(t)| < +∞. We denote the set of all
such functions byL∞. Also, if |w|∞ < r for some r ∈ R>0, wewrite
w ∈ L∞(r).

3. Problem statement

Consider the following plant model

ẋ(t) = f (x(t), u(t), w(t)), (1)

where x(t) ∈ Rn, u(t) ∈ Rm andw(t) ∈ Rp are the state, the control
input and the disturbance input, respectively. The function f : Rn

×

Rm
×Rp

→ Rn is locally Lipschitz and f (0, 0, 0) = 0.Moreover, we
assume that w(.) is measurable and locally essentially bounded.

We consider the dual-rate scenario where the plant (1) is con-
nected to a computer control via a zero-order hold (ZOH) and a
sampler. The control signal is held constant during the sampling

intervals, that is, u(t) = u(kT ) for all t ∈ [kT , (k + 1)T ), k ∈ Z≥0,
where T > 0 is the sampling period. For simplicity, we abuse our
notation and write u(k) := u(kT ) and x(k) := x(kT ). By T and Ts,
we, respectively, denote the sampling periods of the ZOH and the
sampling devices. We assume that Ts = ℓT for some integer ℓ ≥ 1.
Note that ℓ = 1 implies the case of single-rate fashion which does
not often hold in practice. The exact discrete-time plant model can
be obtained from (1) as follows

x(k + 1) = x(k) +

∫ (k+1)T

kT
f (x(τ ), u(k), w(τ ))dτ

=: F e
T (x(k), u(k), wT [k]). (2)

Unfortunately, this requires solving the initial value problem (2)
which does not have a closed-form solution, in most cases of
interest. Consistent with the literature on sampled-data systems,
we use a family of approximate discrete-time models

x(k + 1) = F a
T ,h(x(k), u(k), wT [k]), (3)

where h is the parameter of the numerical integration and used
to enhance the accuracy between the approximate discrete-time
model (3) and the exact discrete-timemodel (2). Although one can
simply take h = T and use some classic approximation methods
such as the Euler method, it is more appropriate to choose h
different from T , as shown in [14] for instance.

The mismatch between the exact discrete-time model (2) and
the approximate discrete-time model (3) is required to be small in
the following sense.

Definition 1 ([22,17]). The family F a
T ,h is said to be one-step

consistent with F e
T if for any real numbers (∆x, ∆u, ∆w) there exist

a function ρ ∈ K∞ and T ∗ > 0 such that for each fixed T ∈ (0, T ∗)
there exists h∗

∈ (0, T ] such that the following holds

|F e
T (x, u, wT ) − F a

T ,h(x, u, wT )| ≤ Tρ(h)

for all x ∈ Rn, u ∈ Rm, w ∈ L∞ with |x| ≤ ∆x, |u| ≤ ∆u,
|wT |∞ ≤ ∆w and all h ∈ (0, h∗). □

Sufficient checkable conditions under which the one-step con-
sistency is guaranteed are given in [13,14].

Assuming full access to the state x, we consider a family of
controllers given by

u(k) = uT ,h(xc(k)), uT ,h(0) = 0, (4)

where

xc(k) =

{x(k), k = iℓ, i ∈ Z≥0,

F a
T ,h(xc(k − 1), u(k − 1), 0), with xc(iℓ) = x(iℓ),
otherwise.

(5)

The controller uses the sampled value of the state every Ts seconds.
To compensate for the lack of information in the inter-samples
the controller uses the estimated state values obtained from the
disturbance-free plant model. Note that, if ℓ = 1, the family of
controllers (4) and (5) reduces to

u(k) = uT ,h(x(k)), uT ,h(0) = 0. (6)

The following definition introduces the notion of uniform local
boundedness of uT ,h [12,17] that is required in the proof of themain
results (Theorems 1 and 2).

Definition 2 ([17]). The control law uT ,h is said to be uniformly
locally Lipschitz if for any∆x > 0 there exist positive real numbers
T ∗ and L̃ such that for each fixed T ∈ (0, T ∗) there exists h∗

∈ (0, T ]

such that

|uT ,h(x2) − uT ,h(x1)| ≤ L̃|x2 − x1|

for all h ∈ (0, h∗) and all x1, x2 ∈ Rn with max{|x1|, |x2|} ≤ ∆x. □
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