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a b s t r a c t

In this paper, we study a distributed rotating consensus problem of second-order multi-agent systems
with nonuniform delays. A distributed algorithm is adopted to drive all agents to reach consensus
while moving around a common point. Based on a frequency domain approach, an upper bound on the
maximum delay is given for the consensus stability of the system. Finally, a numerical simulation result
is included to illustrate the obtained results.
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1. Introduction

As an unavoidable issue in practical applications, delays have
been frequently considered in the study of distributed consensus
problems [1–15]. From the view point of the final dynamics of
the consensus point, the consensus problems with delays can be
categorized into two classes: the static consensus and the moving
consensus. For the static consensus case, the study has already
been very mature and numerous results have been obtained.
For example, articles [1,2] used frequency domain approaches to
address the consensus stability of the multi-agent system with
nonuniform delays and give different conditions to ensure the sys-
tem consensus. For the moving consensus case, current works are
often limited to the flocking-like consensus problem, e.g., [14,15],
where all agents finally move along a line. This might be due to the
reason that for the case of the static consensus point, the system
can be transformed into a reduced-order equivalent one which is
completely decoupled with the component corresponding to the
zero eigenvalue, while for the case of the moving consensus point,
the components of the system corresponding to the eigenvalues
with negative real-parts cannot be decoupled with the compo-
nents corresponding to the eigenvalues with nonnegative real-
parts, which together with delays makes the analysis much more
complicated than the case of the static consensus point.

In this paper, we investigate a rotating consensus problem of
second-order multi-agent systems with nonuniform delays. The
meaning of ‘‘rotating consensus’’ is that all agents should not only
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reach a consensus but also finally move together along a circle
around a common point. It has potential important applications in
many fields, including satellite formation flight, spacecraft docking
and unmanned underwater robots. In contrast to the flocking-like
consensus problem with delays, where the line moving mode has
no effects on the agent relative positions, the rotating consensus
problem contains a cyclic moving mode, making the agent relative
positions time-varying before consensus, and hence the analysis
of the rotating consensus problems is more complicated than that
of the flocking-like consensus problem due to the coupling of
the time-varying relative positions and the delays. Though some
results about the rotating consensus problem have been obtained,
e.g., [16–21], most of these results only considered the case with-
out delays. To this end, our objective is to extend the existing
results about the rotating consensus to take nonuniform delays
into account. First, we introduce a distributed rotating consensus
algorithmwith nonuniform delays. Thenwe transform the original
system into an equivalent one. Based on this equivalent system,we
use a frequency domain approach to analyze the critical condition
for the system, and an upper bound on the maximum delay for the
consensus stability is obtained.

2. Graph theory

Let G(I, E,A) represent an undirected graph, where I =

{1, . . . , n} denotes the node set, E ⊆ V × V denotes the edge
set, and A = [aij] denotes a weighted adjacency matrix. An edge
of G is denoted by eij = (i, j). It is assumed that (i, i) ̸∈ E for
all i. For the weighted adjacency matrix A, aij > 0 if eij ∈ E
and aij = 0 otherwise. The neighbor set of node i is denoted by
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Ni = {j ∈ I : (i, j) ∈ E}. The Laplacian of the graph G is defined
as L = [lij], where lii =

∑n
j=1aij and lij = −aij, i ̸= j. A path is

an edge sequence having the form (i1, i2), (i2, i3), . . ., where ij ∈ I.
The graph is connected if each node has at least one path to every
other node.

Lemma 1 ([22]). Suppose that the graph G is connected. The Lapla-
cian L of the graph G has a simple eigenvalue at 0 associated with the
eigenvector 1n and all its other n − 1 eigenvalues are positive, where
1n denotes an n-dimensional vector each entry of which is 1.

3. Model and algorithm

Suppose that the multi-agent system under consideration con-
sists of n agents in a plane. Each agent is regarded as a node in an
undirected graph G. Each edge (vj, vi) ∈ E(G) or (vi, vj) ∈ E(G)
corresponds to an available information channel between agent vi
and agent vj at time t . The set of the neighbors of the ith agent
associated to the graph G is denoted by Ni, and the Laplacian of the
graph G is denoted by L. Each agent updates its current state based
upon the information received from its neighbors.

Let xi ∈ C and vi ∈ C be the position and velocity states of agent
i. Suppose that each agent has the following dynamics:

ẋi(t) = vi(t),
v̇i(t) = ui(t),

(1)

where ui(t) ∈ C is the control input (or algorithm) at time t and
the initial conditions of xi(s) and vi(s) satisfy the dynamics (1) for
all s ≤ 0.

In this paper, we are interested in considering the scenario
where all agents reach a consensus while moving together around
a common point along a circle with nonuniform delays. First, we
give a mathematical definition about this motion. We say the
algorithm ui asymptotically solves a rotating consensus problem,
if and only if the states of agents satisfy

lim
t→+∞

[xi(t) − xj(t)] = 0,

lim
t→+∞

[vi(t) − vj(t)] = 0,

lim
t→+∞

[v̇i(t) − ĩvi(t)] = 0

for all i, j ∈ I, where ĩ denotes the imaginary unit. The first two lim-
its mean that all agents finally converge to a point while the third
limit means that all agents finally move along a circle according
to the knowledge of the circular motion. Rotating consensus has
important potential applications in many fields including space-
craft docking, formation flight and unmanned underwater robots.
Though some results have been obtained on the rotating consensus
problem, e.g., [16]-[21], most of these results only considered the
case without delays.

To study the rotating consensus problem with nonuniform de-
lays, we consider the following algorithm:

ui(t) = ĩvi(t) +

∑
vj∈Ni

aij(xj(t − τij) − xi(t − τij))

+

∑
vj∈Ni

aij(vj(t − τij) − vi(t − τij)),
(2)

where τij = τji are the communication delays between the ith
and the jth agents. Suppose that there are M different delays,
denoted by τm ∈ {τij, i, j ∈ I} (m = 1, 2, . . . ,M). Let ξ (t) =

[x1(t), v1(t), . . . , xn(t), vn(t)]T . The network dynamics is summa-
rized as

ξ̇ (t) = (In ⊗ A)ξ (t) −

M∑
m=1

(Lm ⊗ B)ξ (t − τm) (3)

where⊗ denotes the Kronecker product, ξ (s) = ξ (0), s ∈ (−∞, 0],
A =

[
0 1
0 ĩ

]
, B =

[
0 0
1 1

]
and Lm ⊗ B is the coefficient matrix of the

variable ξ (t − τm) for m = 1, . . . ,M . Clearly, L =
∑n

m=1Lm.

4. Main results

For convenience of discussion, we make a model transforma-
tion. Let v̄i(t) = xi(t) + vi(t) and φ(t) = [x1(t), v̄1(t), . . . , xn(t),
v̄n(t)]T . Then the system (3) can be written as

φ̇(t) = (In ⊗ E)φ(t) −

M∑
m=1

(Lm ⊗ F )φ(t − τm) (4)

where E =

[
−1 1

−1 − ĩ 1 + ĩ

]
and F =

[
0 0
0 1

]
. Clearly, when all delays

are equal to zero, the system (4) can be written as

φ̇ = (In ⊗ E − L ⊗ F )φ(t). (5)

Before themain results,we need first give some lemmas. Specif-
ically, Lemma 2 proves that (4) has two simple eigenvalues at 0 and
ĩ and all its other 2n−2 eigenvalues have negative real parts when
τm = 0 for all m. Lemmas 3 and 4 study the monotonicity of two
specific functions that will be used in Theorem 1.

Lemma 2. Suppose that the graph G is fixed and connected.
(1) The matrix In ⊗ E − L ⊗ F has simple eigenvalues at 0 and ĩ and
all its other 2n − 2 eigenvalues have negative real parts.
(2) The matrix In ⊗ E −

∑M
m=1(Lm ⊗ F )e−τm ĩw has one eigenvalue at

w = 0 and w = 1, respectively, where τm are nonnegative constants
for all m.

Proof. See the Appendix.

Remark 1. From Lemma 2, there is one imaginary eigenvalue
besides the zero eigenvalue in the system matrix of (5). This is
different from most of the existing results, where the closed-loop
system has only one zero eigenvalue. Moreover, the agents in this
paper are in the form of second-order dynamics and considered in
complex plane, different from the existing delay works, where the
agents lie in the real plane and are essentially in the form of first-
order dynamics. These two differences make the system analysis
much more complicated than the existing works.

Lemma 3. (1) Let D(w) =
arctanw

w
. For w ∈ (0, +∞), d

dwD(w) < 0,
and for w ∈ (−∞, 0), d

dwD(w) > 0.
(2) Consider the equation tanwτ −w = 0, where τ > 0 is a constant
and w ∈ R. Suppose that the equation tanwτ − w = 0 has nonzero
roots and let r1 > 0 and r2 < 0 be, respectively, its positive root and
negative root. For w ∈ (r2, 0), tanwτ − w > 0 and for w ∈ (0, r1),
tanwτ − w < 0.

Proof. See the Appendix.

Lemma 4. Consider the equation (w2
−w)2

w2+1
= β , where β > 0 is

a constant and w ∈ R. It has only one root larger than 1 and its
absolute value is no smaller than the other real roots. The function
F (w) =

(w2
−w)2

w2+1
is an increasing function of w in (1, +∞).

Proof. See the Appendix.

Theorem 1. Consider a network of agents with nonuniform delays.
Suppose that the graph G is fixed and connected. The algorithm (2)
solves the rotating consensus problem, if τmax <

arctan(z)
z , where z is

the maximum root of (λmax)2 =
(w2

−w)2

w2+1
, and τmax and λmax denote,

respectively, the maximum delay and the maximum eigenvalue of L.
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