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a b s t r a c t

In this paper we study affine and bilinear systems on Lie groups. We show that there is an intrinsic
connection between the solutions of both systems. Such relation allows us to obtain some preliminary
controllability results of affine systems on compact and solvable Lie groups. We also show that the
controllability property of bilinear systems is very restricted and may only be achieved if the state space
G is an Euclidean space.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

An affine system on a connected Lie group G is a family

ẋ(t) = F 0(x(t)) +

m∑
j=1

ωj(t)F j(x(t)),

of ordinary differential equations, whereω := (ω1, . . . , ωm) ∈ U is
a piecewise constant function and F 0, F 1, . . . , Fm are affine vector
fields.

The class of affine systems are in fact quite large since it contains
the classical linear and bilinear systems on the Euclidean space Rd

and more generally the invariant, linear and bilinear systems on G
(see [1–3] and [4]). Therefore, the dynamic involved here is really
much more complicated than those of the mentioned systems.

In the present paper we exploit the intrinsic connection be-
tween affine and bilinear systems in order to obtain controllability
results for affine systems. One example where one can see how
strong is such connection is given for G = Rn by Jurdevic and
Sallet in [5]. There the authors showed that an affine system is
controllable as soon as it has no singularities and its associated
bilinear system is controllable inRn

\{0}. However, any other class
of Lie groups contains nontrivial proper subsets that are naturally
invariant by automorphisms implying that controllability of any
bilinear system on G \ {e} can only be expected when G is isomor-
phic to Rn (see Theorem 3.4 ahead). Therefore, generalizations of
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the result of Jurdevic and Sallet for more general Lie groups are not
possible.

The above forces us to look at affine systems in a more geo-
metric way by using the above invariant subsets as done in [6]
and [7] for linear systems. In order to do that we first prove
that there is an intrinsic connection between the solutions of any
affine system and its associated bilinear system.More accurate, the
solutions of an affine system are given by left translation of the
solutions of their associated bilinear system. Using such formula
we are able to generalize some results from [7] allowing us to prove
controllability results for affine systems on compact and solvable
Lie groups under the assumption of local controllability around the
identity.

This paper is structured as follows. In Section 2 we introduce
the basic concepts about control systems and affine vector fields.
In Section 3 we analyze bilinear systems on Lie groups. We give
an explicit formula for the solutions of such systems and show
that the controllability of bilinear systems is only to be expected
in Euclidean spaces. Section 4 is devoted to the understanding of
affine systems. We show that the solution of an affine system is
given by left translation of the solution of its associated bilinear
system. Such expression allows us to prove some results concern-
ing the controllability of affine systems on compact and solvable
Lie groups.

2. Preliminaries

In this section, we introduce basic concepts that will be needed
through the paper.
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2.1. Notations

By a smooth manifold we understand a finite-dimensional,
connected, second-countable, Hausdorff manifold endowed with
a C∞-differentiable structure. If f : M → N is a differentiable map
between smooth manifolds, we write (df )x : TxM → Tf (x)N for
its derivative at x ∈ M , where TxM is the tangent space at x ∈ M
and Tf (x)N the tangent space at f (x) ∈ N . When we do not need to
specify the point x ∈ M we say only that f∗ is the derivative of f .

A Lie group G will be a group endowed with the structure of a
smoothmanifold. If G is a Lie group, wewrite Aut(G) for the groups
of automorphisms ofG andX(G) for the set of C∞ vector fields onG.
By e we denote the identity element of G and by i the inversion of
G, that maps g ∈ G into its inverse g−1

∈ G. For any given g ∈ Gwe
denote by Lg , Rg and Cg the left translation, right translation and
the conjugation by g , respectively. The image of the exponential
map exp : g → G is denoted by exp(X) or by eX . The Lie algebra g
of G will always be identified with the set of right invariant vector
fields on G.

2.2. Control systems

A control system on a smoothmanifoldM is given by the family

ẋ(t) = f 0(x(t)) +

m∑
j=1

ωj(t)f j(x(t)), ω = (ω1, . . . , ωm) ∈ U, (Σ)

of ordinary differential equations. Here f 0, f 1, . . . , f m are smooth
vector fields on M . f 0 is called the drift vector field and f 1, . . . , f m
the control vector fields. The set of admissible control functions U is
given by the set of piecewise constant functions ω : R → Rm.

For each ω ∈ U , the corresponding differential equation Σ
has a unique solution ϕ(t, x, u) with initial value x = ϕ(0, x, u).
The systems considered in this paper all have globally defined
solutions, which give rise to a map

ϕ : R × M × U → M, (t, x, ω) ↦→ ϕ(t, x, ω),

called the transition map of the system. We also use the notation
ϕt,ω for the map ϕt,ω : M → M given by x ↦→ ϕt,ω(x) := ϕ(t, x, ω).
Since f 0, f 1, . . . , f m are smooth, the map ϕt,ω is also smooth. The
transition map ϕ is a cocycle over the shift flow

θ : R × U → U, (t, ω) ↦→ θω = ω(· + t),

i.e., it satisfies ϕ(t + s, x, ω) = ϕ(s, ϕ(t, x, ω), θtω) for all t, s ∈

R, x ∈ M andω ∈ U . Moreover, it holds that ϕ−1
t,ω = ϕ−t,θtω and, for

all t1, t2 > 0 and ω1, ω2 ∈ U

ϕ(t1, ϕ(t2, x, ω2), ω1) = ϕ(t + s, x, ω),

where ω(τ ) =

{
ω1(τ ) for τ ∈ [0, s]

ω2(τ − s) for τ ∈ [s, t + s].

For x ∈ M and τ > 0 we write

R≤τ (x) := {ϕ(t, x, ω); t ∈ [0, τ ] and ω ∈ U} and

R(x) :=

⋃
τ>0

R≤τ (x)

for the set of points reachable from x ∈ M up to time τ and the
reachable set from x, respectively. Analogously, we define the set
of points controllable to x within time τ and the controllable set of x
respectively by

R∗

≤τ (x) := {y ∈ M; ∃t ∈ [0, τ ], ω ∈ U with ϕ(t, y, ω) = x} and

R∗(x) :=

⋃
τ>0

R∗

≤τ (x).

The systemΣ is said to be locally controllable at x if x ∈ intR(x).
In the analytic case, it follows from Theorem 3.1 of [8] that Σ is

locally controllable at x if x ∈ intR(x) ∩ intR∗(x). In particular,
that is the case for the systems on Lie groups under consideration
in this paper. The system Σ is said to be controllable in X ⊂ M
if for all x, y ∈ X there exist τ > 0 and ω ∈ U such that
y = ϕ(τ , x, ω). Equivalently, the system is controllable in X ⊂ M
if X ⊂ R(x) ∩ R∗(x) for some (and hence for all) x ∈ X .

Remark 2.1. It is worth to mention that the problem or char-
acterizing local controllability was studied by many authors (see
for instance Hermes [9,10] Sussmann [11–13] Bianchini and Ste-
fani [14]). Necessary and sufficient conditions for local controllabil-
ity are expressible in terms of X ∈ L, where L = L(f 0, f 1, . . . , f m)
denote the smallest Lie algebra of vector fields on M containing
f 0, f 1, . . . , f m. Indeed all the papers above give sufficient condi-
tions for local reachability.

Remark 2.2. The choice of the set of admissible control functions
being piecewise constant is not restrictive. In fact,most of the usual
choices of admissible functions are such that the solutions ofΣ can
be approximated by using piecewise constant ones.

2.3. Affine and linear vector fields

In this sectionwe define affine and linear vector fields and state
their main properties. For the proof of the assertions in this section
the reader can consult [1,15] and [16].

Let G be a connected Lie group with Lie algebra g. Following [1],
the normalizer of g is the set

η := {F ∈ X(G); for all Y ∈ g, [F , Y ] ∈ g}.

A vector field F on G is said to be affine if it belongs to η. If F ∈ η

and F (e) = 0 the vector field F is said to be linear. Any affine vector
field F is uniquely decomposed as F = X +Y whereX is linear and
Y is right invariant. Moreover, any F ∈ η is complete, any linear
vector field X is an infinitesimal automorphism, that is, its flow in
1-parameter subgroup of Aut(G), and if {αt}t∈R and {ψt}t∈R stand,
respectively, for the flow of F and X , where F = X + Y , we have
that

αt (g) = Lαt (e)(ψt (g)), for all g ∈ G. (1)

The next technical lemma shows that expression (1) can be
generalized for finite composition of flows of affine vector fields.
Such result will be needed ahead.

Lemma 2.3. Let {Fi}i∈N be a family of affine vector fields with
decomposition Fi = Xi +YiwhereXi is linear and Yi is right-invariant,
for any i ∈ N. Denote by {αi

t}t∈R and {ψ i
t}t∈R the flows of Fi and Xi

respectively. For any i1, . . . , in ∈ N and any real numbers τ1, . . . , τn,
it holds that

αin
τn

◦ · · · ◦ αi1
τ1

= L
α
in
τn

(
···

(
α
i1
τ1 (e)

)
···

) ◦ ψ in
τn

◦ · · · ◦ ψ i1
τ1
. (2)

Proof. Our proof is by induction. For n = 1 such equation coincides
with (1) and the result holds. Let us consider i1, . . . , in+1 ∈ N,
τ1, . . . , τn+1 and by the hypothesis of induction assume that

αin
τn

◦ · · · ◦ αi1
τ1

= L
α
in
τn

(
···

(
α
i1
τ1 (e)

)
···

) ◦ ψ in
τn

◦ · · · ◦ ψ i1
τ1

holds. Hence,

α
in+1
τn+1 ◦ αin

τn
◦ · · · ◦ αi1

τ1
= α

in+1
τn+1 ◦ L

α
in
τn

(
···

(
α
i1
τ1 (e)

)
···

) ◦ ψ in
τn

◦ · · · ◦ ψ i1
τ1

= L
α
τn+1
in+1

(e) ◦ ψ
in+1
τn+1 ◦ L

α
in
τn

(
···

(
α
i1
τ1 (e)

)
···

) ◦ ψ in
τn

◦ · · · ◦ ψ i1
τ1
.
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