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a b s t r a c t

Variable selectionmethods have beenwidely used for system identification. However, there is still amajor
challenge in producing parsimoniousmodels with optimal model structures as popular variable selection
methods often produce suboptimalmodel with redundantmodel terms. In the paper, stability orthogonal
regression (SOR) is proposed to build a more compact model with fewer or no redundant model terms.
Themain idea of SOR is thatmultiple intermediatemodels are produced by orthogonal forward regression
(OFR) using sub-sampling technique and then the final model is a combination of these intermediate
model terms but does not include infrequently selected terms. The effectiveness of the proposedmethods
is analyzed in theory and also demonstrated using two numerical examples in comparison with some
popular algorithms.

© 2018 Published by Elsevier B.V.

1. Introduction

The main objective of system identification is to establish a
mathematical model for a system using system input and out-
put observations. The widely used linear models include auto-
regressive with eXogenous input (ARX), auto-regressive moving
average with eXogenous input (ARMAX), Box Jenkins and state
space models [1]. If the performance of the linear models is not
satisfied, the nonlinear ARX (NARX) is an alternative option.

The most popular structure for the NARX model is a sum of
nonlinear functions whose parameters are given a priori. The non-
linear functions with pre-set parameters are also referred to as
terms in some literatures [2]. However, the pre-fixed values for
these nonlinear parameters are not optimal, and therefore their
correspondingnonlinear functions are often redundant. The simple
option is to use ordinary least square methods to estimate all
the coefficients of these nonlinear functions. For these redundant
functions, their correct coefficients should be zeros. However, due
to the noise effect and correlations between redundant and im-
portant functions, the estimated coefficients of redundant func-
tions are often not zeros. In other words, the redundant functions
are included into the estimated models, leading to unsatisfactory
model performance. Alternatively, regularized least squares algo-
rithms, such as l1 or l2 regularization can be used to penalize the
coefficients and therefore to produce more compact models. For
regularizedmethods, some additional parameters need to be tuned
carefully [3].
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Another popular option of building a nonlinear model is to
select representative nonlinear functions and then determine their
coefficients. The process for selecting nonlinear functions is also re-
ferred to as subset or term selection [2]. The predeterminedmodel
set may include a huge number of terms and most of terms should
not be included into the final model. Therefore, it is important to
determine which terms to be included into the final model. The
principle of subset selection is to build a parsimonious model with
as few redundant model terms as possible [2]. The ideal case is to
produce an optimalmodelwithout any redundantmodel term. The
orthogonal forward regression (OFR) is one of themostwell known
subset selectionmethods. A good review for these existing term se-
lection and their modifications can be found in literatures [1,3–5].
This paper focuses on the subset selection which is a hard problem
in the NARX model [6].

The OFR and their modifications have been successfully used in
many applications and well studied within system identification
community. Inmost applications, they can produce a parsimonious
model. However, a suboptimal solution can be obtained in some
applications, in particular when the following conditions happen:

• Insufficient input–output data and non-persistent exci-
tation: Most existing methods are based on least square
principle and they are asymptotically optimal. The training
data length is too short to incorporate all the useful informa-
tion,whichmay lead to an inaccuratemodel. Non-persistent
input is another proper problem relating to system input
data. Non-persistent excitation can cause regression matrix
being ill-conditioning, which may result in poor estimation
of the parameters and also poor long term prediction [7].
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• Highly correlated terms: The adjacent lagged system in-
puts or outputs could be very similar in their values and
therefore their corresponding nonlinear terms are highly
correlated, which causes difficulty in selecting the correct
terms from the similar alternatives.

• No optimal criteria: Most methods have to rely on the
information based criteria to determine themodel structure.
Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC) and other statistical criteria are popular op-
tions [1]. These criteria are simple to use but they may not
produce optimal model sizes.

• Mixed problems. The above problems can be coupled,
which makes it more difficult to build an accurate model,
especially for nonlinear systems.

The above reasons can cause sub-optimal model structure with
redundant terms. Generally, there are two types of redundant
terms. The first type is that the terms are highly correctly with the
useful terms and they represent the useful terms when entering
the models. The second type is that the terms can generally reduce
the model error but tend to approximating the noise. For sparse
modeling problems where the number of the useful terms is much
smaller than that of the whole candidate terms, the second type,
noise terms, could be more serious than the first type in terms
of their number in the final model. Since the noise in the input–
output data is usually unknown and very hard to estimate with a
good accuracy, it is difficult to choose a proper stopping criterion
or threshold to control the number of noise terms. Further, system
identification usually use random data as the system input. When
repeating producingmodels using different input–output data, the
models could be significantly different in terms of the number of
redundant or noise terms even if the model stopping criteria or
threshold is fixed. In other words, one main difficulty in choosing
the model stopping criterion using OFR in practice is to limit the
model redundant model terms. If a good criterion or threshold is
chosen, the resultant model has fewer or no redundant terms. If
not chosenwell, themodel could have a large number of redundant
terms. Another difficulty is that, when repeating the modeling
process but just using different input–output data, a number of
different models may be generated and it is hard to determine
which model should be chosen as the final one.

In this paper, the stability orthogonal regression (SOR) is pro-
posed to build a more parsimonious model by reducing the redun-
dant model terms. A main advantage of SOR is that it can produce
an improved model with fewer redundant terms than the original
OFR method, and further it may provide the chance to produce an
optimal model without any redundant terms. This is achieved by
introducing the stability selection scheme into the OFR method.
The stability selection was introduced in [8] and mainly aims to
produce a stable model with minimal redundant terms. The main
principle of stability selection is that it producesmultiple interme-
diate models using sub-sampling techniques. Then the final model
consists of the most frequently selected terms in the intermediate
models.

This paper is organized by starting to introduce theNARXmodel
and OFR method, then propose the SOR method and analyze its
properties in theory, followed by numerical examples.

2. Basics

2.1. NARX model

The linear-in-the-parameters NARXmodel can bewritten in the
matrix form given as follows:

y = PΘ + Ξ (1)

where y = [y(1), . . . , y(N)]T is the output vector, Θ = [θ1, . . . ,
θM ]

T is the weight vector, Ξ = [e(1), . . . , e(N)]T is the residual
vector. The matrix P is the whole candidate terms given by P =

[p1, . . . , pM ], which is an N × M matrix with pi = [pi(1), . . . ,
pi(N)]T .

The main objective of the subset or term selection is to select
the useful terms Pm = [pi1 , . . . , pim ] from the whole candidate
term pool P, where m denotes the number of selected terms and
[i1, . . . , im] are indexes. Then the coefficients of the selected terms
can be written as Θm = [θi1 , . . . , θim ]. Using orthogonal least
squares (OLS) method, Eq. (1) can be factorized as

y = WAΘ + Ξ (2)

here matrix A is an M × M unit upper triangular matrix. W =

[w1,w2, . . . ,wM ] is anN×M matrixwith orthogonal columns that
satisfiesWTW = diag[wT

i wi]. For brief, Eq. (2) can be rewritten as

y = WAΘ + Ξ = Wg + Ξ (3)

where g = [g1, g2, . . . , gM ]
T

= AΘ is the orthogonal weight
vector.

2.2. Orthogonal forward regression (OFR)

OFR is one of most well-known term selection methods and
it mainly involves a series of orthogonal composition using OLS
method. OFR begins with an empty model without any terms in
it and then gradually builds a model by adding one term that
gives the largest decrease or increase in the cost function at a time
until themodel performance ismet under some stopping criterion.
The first important task in OFR is to choose a cost function for
determiningwhich term is included to a resultantmodel. The error
reduction ratio (ERR) is a popular criterion for term selection, and
its value is derived from the sum of squares of the model output.
More specifically, the sum of squares of the output variables y is

yTy =

m∑
i=1

g2
i w

T
i wi + ΞTΞ. (4)

It can be seen that g2
i w

T
i wi is the contribution of the termwi to

the sumof squares of the output. The ERR value due towi is defined
as [2]

[err]i = g2
i w

T
i wi/(yTy) = giwT

i y/(y
Ty). (5)

The details of the OFR procedure using the ERR criterion are
summarized as follows [2,9]:

At the kth step, for 1 ≤ i ≤ M, i ̸= i1, . . . , i ̸= ik−1 the following
procedure are calculated:

if k = 1

w(i)
1 = pi

else

a(i)jk = wT
j pi/wT

j wj, 1 ≤ j < k

w(i)
k = pi −

k−1∑
j=1

a(i)jkwj

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6)

and

g (i)
k = (w(i)

k )Ty/(w(i)
k )Tw(i)

k ,

err (i)k = g (i)
k (w(i)

k )Ty/yTy

}
. (7)

The largest ERR value is calculated using err (ik)k = max{
err (i)k , i ̸= i1, . . ., ik−1

}
and the term related to the number ik is
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