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a b s t r a c t

In this paper, we establish group consensus conditions for first-order systemswith communication delays
using the relationship between time-delay parameter and the closed-loop characteristic roots. At first, we
derive necessary conditions for the delay-free case, then we proceed to the delay-induced case. Contrary
to most studies on group consensus where the conditions are derived considering the Laplacian of the
entire multiagent network, we derive the group consensus conditions based on the Laplacian matrices
that describe each subgroup and the inter-connection among sub-groups. Simulation studies are used to
validate the derived conditions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Coordination control is an important subject amongst re-
searchers as we continue to evolve into the age of automation and
robotics. It is required that autonomous machines demonstrate
some intelligent coordination behavior exhibited by human or an-
imal counterparts. Many applications of coordination control can
be found in Unmanned Aerial Vehicles (UAV), Unmanned Ground
Vehicles (UGV) and Unmanned Underwater Vehicles (UUV). Re-
cently, some applications are being developed for static (non-
mobile) systems such as power and renewable energy systems.
Other applications may be found in biology, chemistry, economics
and even politics. Some of the interesting topics in coordination
control of autonomous machines include; consensus, formation,
alignment, rendezvous, containment, circumnavigation, swarming
and flocking control.

A network of multiagent systems (MAS) is said to reach a
consensus when the states of the agents within the network reach
an agreement about a given objective. Consensus control can be
seen as a special case for each of the aforementioned forms of
coordination control because they all require the states of the
agents reaching agreements depending on the specified group
objective. Numerous investigations have been conducted by var-
ious researchers on consensus control problems based on differ-
ent approaches such as leader–follower [1,2], graph theory [3,4],
behavior-based [5,6] and virtual structure [7] based approaches.
Recently, group consensus control has attracted the attention of
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researchers [8–21]. In group consensus, the agents within a sub-
group achieve asymptotic consensus to a terminal state which
may differ from the terminal state of another subgroup. Group
consensus problem of MAS under switching topology was studied
in [21], authors in [19] studied the group consensus problem for
systemswith communication delay in discrete-time instants using
nonnegative matrix theory and graph theory. Group consensus
tracking control problem was studied in [10] for second-order
multiagent systems with directed fixed topology. Usually, con-
sensus protocols are designed for MAS in infinite-time. Recently,
authors in [22] studied group consensus using finite-time analysis.
Specifically, a nonlinear distributed protocol using local informa-
tion was designed for a leader–follower based multiagent system
under directed topology. Also, the authors proposed an approach
for estimating the settling time of themulti-agent system. Further-
more, fixed-time consensus tracking control for MAS with inher-
ent nonlinear dynamics was discussed in [23]. According to the
authors, the consensus protocol proposed does not require inter-
group balance conditions and interactions are allowed between
leaders and followers in different subgroups. Also, an approach to
designing controller gains to achieve fixed time group trackingwas
proposed.

2. Related works

In this section, we review some related works by earlier re-
searchers on group consensus control problem. Necessary and
sufficient consensus conditions for general second-order multi-
agent systemswith communication delayswere established in [24]
using the relationship between time delay parameter and the roots
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of the characteristic equations. The effect of coupling strengths
amongst groups of multi-agent systems was investigated in [12].
Using simulation examples only, the authors in [12] deduced an
upper bound for the coupling strength between subgroupswithout
an explicit criterion for computing these bounds. In [20], necessary
and sufficient conditions for group consensus were derived for
multi-agent systems via a rotationmatrix approach. Group consen-
sus problem for linearly coupled multi-agent systems was studied
in [13]. Authors in [25], discuss group consensus for general lin-
ear multiagent systems and stated that by designing appropriate
control gains, group consensus can be achieved for any magnitude
for the coupling strengths amongst agents. In [10], the authors
studied group consensus tracking control for second-order multi-
agent systems with directed fixed topology. The authors extended
their results to χ-group consensus tracking case. Authors in [14]
discussed group consensus control for MAS with nonlinear input
constraints. The authors proposed consensus protocols for discrete
and continuous-time cases and the consensus conditions were
derived using graph-theory, Lyapunov and LaSalle’s invariance
principles. Using Mao’s stability analysis for stochastic differential
equations, authors in [26] studied derived group consensus condi-
tions for leader–follower based multiagent systems under noises
and time-delays in directed networks. According to the authors,
this approach ensures consensus can be achieved almost certainly
and exponentially fast.

In this paper, we derive some necessary conditions for group-
consensus control of first-order multi-agent systems with and
without communication delays using the roots of the character-
istic equations of the closed-loop system. Using graph theoretic
methods,we establish some relationships between the inter-group
and intra-group coupling strength that are required to be satisfied
for group-consensus to be achieved. Contrary to previous studies
in group consensus where the relationships between subgroups
is neglected and the consensus protocols and control gains are
chosen using information about the Laplacian describing the entire
multi-agent network, the contributions of this paper are as follows:

• The approach for designing the consensus conditions takes
into consideration the relationship between eigenvalues of
the Laplacian describing each subgroup, Laplacian describ-
ing inter-group relations, the intra and inter group coupling
strengths.

• We establish some necessary consensus conditions which
are necessary in designing the coupling strengths or control
gains for the delay free case.

• We extend the conditions and discussions in the delay free
instance to the casewhere communication delays are inher-
ent in the network.

The rest of this paper is organized as follows; Section 3 presents
the formulation of the group consensus problem and reviews some
basic graph theory terminologies. In Sections 4 and 5 we establish
conditions for group consensus for first-ordermulti-agent systems
without and with communication delays respectively. Simulation
studies were conducted in Section 6.

Notations Im(χ ) is used to denote imaginary parts of χ . Re(χ ) is
used to denote real parts of χ . In represent identity matrix of size
n. det(A) is the determinant of matrix A.

3. Problem formulation

3.1. Algebraic graph theory

Graph theory is a standard framework for representing connec-
tions and interactions between networked, distributed or multi-
agent systems. A graph G(V, E) is defined as a pair consisting of
vertices V and edges E . V(G) represents the set of vertices in G and

E(G) is the edge set of G. A graph is said to be undirected when the
edge between any pair of vertices has no orientation. Conversely,
in a directed graph or digraph, each edge e ∈ E(G) is directed
between any pair of vertices, that is, the edge e = vivj, originates at
vertex vi and terminates at vertex vj. In a simple graph, there are no
self-loops or multiple edges between vertices. In a complete graph,
every pair of vertices is connected.

Some special matrices are used to describe the properties and
information in a graph. These matrices include, degree, adjacency,
incidence, and laplacian matrices. For a graph on n vertices and
m edges, the degree matrix ∆(G) ∈ Rn×n, is a diagonal matrix,
with elements on the diagonal representing the degree d(vi) of
each vertex. d(vi) is the sum of edges incident to the vertex vi. The
adjacency matrix A(G) is a symmetric n × n matrix describing the
adjacency relationship in G. Each aij ∈ A(G) assume 1 if vivj ∈

E(G) and 0 otherwise. The Laplacian matrix in an undirected graph
L(G) = ∆(G) − A(G). The incidence matrix W of a directed graph
D, is defined asW = [wij].wij = −1 if vi is the tail of ej,wij = 1 if vi
is the head of ej and wij = 0 if vi is not adjacent to ej The Laplacian
matrix of a directed graph D is L(D) = W(D)W(D)T .

3.2. Consensus

Consider a network of multiagent systems (MAS) described by
G consisting of n agents described by the following first-order
dynamics:

ẋi(t) = ui(t), i = 1, 2, . . . , n (1)

where xi, and ui represent the states and control inputs of each
agent in the network.

Definition 1. The MAS described by G with dynamics (1) achieves
consensus if for any xi(0),

lim
t→∞

|xi(t) − xj(t)| = 0 ∀i, j = 1, 2, . . . n

and the MAS asymptotically solves average-consensus problem
when,

lim
t→∞

|xi(t)| =
1
n

n∑
j=1

xj(0) ∀i, j = 1, 2, . . .N.

Now, suppose the control protocol ui(t) is chosen as:

ui(t) = −

n∑
j=1

aij(xi(t) − xj(t)) j = 1, 2, . . . , n (2)

the closed loop system (1) under protocol (2) is given as:

ẋ = −Lx. (3)

Lemma 1 ([27]). Suppose that L = [lij] ∈ Rn×n satisfy lij < 0, i ̸= j
and

∑n
j=1lij = 0, i = 1, 2, . . . , n, then the following conditions are

equivalent:

• L has a simple zero eigenvalue and all other eigenvalues have
positive real parts.

• Lx = 0 implies that x1 = x2 = · · · xn.
• Consensus is reached asymptotically for the system ẋ = −Lx.
• the directed graph of L has a directed spanning tree
• the rank of L is n − 1.

3.3. Group consensus

Consider a network consisting of n + m multiagent systems
belonging to subgroup χ1 and χ2 respectively, described by the
following first-order dynamics.

ẋi(t) = axi + bui(t) (4)
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