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a b s t r a c t

This paper presents a novel convex optimization approach to design state-feedback control for polynomial
systems. Design criteria are comprised of a quadratic cost function and bounded magnitudes of control
inputs. Specifically, we formulate a control synthesis of closed-loop systems operated in a given bounded
domain characterized by a semi-algebraic set. We consider an extended class of rational Lyapunov
functions and derive an upper bound of the cost function, together with a state-feedback control law.
By exploiting bounds on the control input magnitudes, the controller design condition can be cast
as a parameter-dependent linear matrix inequality (PDLMI), which is convex optimization and can
be efficiently solved by sum-of-squares (SOS) technique. In addition, we derive a sufficient condition
to compute a lower bound of the cost function. When choosing polynomial structure of the solution
candidate, the lower bound can also be written as PDLMI. Numerical examples are provided to illustrate
the effectiveness of the proposed design.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Controller synthesis of nonlinear systems has received consid-
erable attention for several decades. When focusing on the class of
polynomial systems, i.e., nonlinear systems characterized by poly-
nomial vector fields, various Lyapunov synthesis problems were
formulated as convex optimization problems called parameter-
dependent linear matrix inequalities (PDLMIs) [1,2], by applying the
notion of state-dependent linear-like representations [3–6] and
considering some certain classes of Lyapunov functions [5–10].
Although PDLMIs are difficult to solve, one can approximate them
as standard LMIs via sum-of-squares (SOS) technique [2,8,11].

In the previous works of [3,4,12,13], state-feedback synthesis
with local asymptotic stability was established using quadratic
or polynomial Lyapunov functions and can be cast as PDLMIs.
For local stable synthesis, rational Lyapunov functions [5–7] are
more flexible than polynomial Lyapunov functions, and hence
result in better closed-loop performance than those obtained from
polynomial Lyapunov functions. Construction of rational Lyapunov
functions, however, is generally difficult since the problem is
originally nonconvex [7,14] and cannot be directly formulated as
PDLMIs. The nonconvex issue were partially addressed by several
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approaches [4–6]. Such approaches rely on a very limited class of
Lyapunov functions [4], or imposing some additional constraints
to the original nonlinear systems [5,6]. It turns out that the extra
constraints are difficult to verify in practice.

This paper aims to design state-feedback control for polynomial
systems with a guaranteed upper bound on a quadratic cost func-
tion and subjected to bounded control inputs. It is noted that the
control input constraints make the synthesis problem more prac-
tical, but harder in real control applications. Existing studies con-
sider stabilizing control design dealingwith input bounds (see [12]
for example). We hardly see in the literature control design with a
quadratic cost and control input constraints. In this paper, we de-
velop a convex condition for designing a state-feedback controller
which minimizes an upper bound on the cost function. The design
condition is formulated as an PDLMI by considering an extended
class of rational Lyapunov functions, and by exploiting the input
magnitude bounds. To the best of our knowledge, the technique of
exploiting input bounds to address non-convex design conditions
has not been proposed in the literature. Main contributions of this
paper are summarized as follows.
(i) We propose an effective approach to design a certain type of
state-feedback control law. Indeed, the proposed design condition
provides more flexibility in the construction of rational Lyapunov
functions than those in [4–6]. In addition to our preliminary work
in [15], we show that the proposed design condition using rational
Lyapunov functions is less conservative than the existing design
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condition in [3], when the input constraints are imposed to the
design problem. Numerical results illustrate the benefit of the
proposed design condition and are compared to that of [3] when
the input constraints are tight.Moreover,weprovide an alternative
design condition which requires less number of constraints than
that of the main design.
(ii) We propose a functional inequality to obtain a lower bound on
the cost function. Seeking a solution of this inequality is computa-
tionally tractable. In particular, the computation can be formulated
as PDLMI by limiting the class of solution candidate to polyno-
mials. Once the upper and lower bounds are computed, we can
estimate how close the suboptimal performance is to the optimal
performance. In other words, we can measure conservatism of the
computed bounds. It is shown by numerical examples that the gap
between the two bounds becomes smaller when we increase the
degree of rational functions and polynomials. Moreover, when this
gap is small enough, we can say that the suboptimal performance
is close to the optimal performance.

This paper is organized as follows: Problem formulation is
stated in Section 2. Section 3 explains state-feedback control de-
sign and upper bound condition. A lower bound of the quadratic
cost is derived in Section 4. Section 5 presents numerical examples.
Conclusions are given in Section 6.

2. Problem statement

Consider a class of nonlinear dynamical systems

ẋ = f (x) + B(x)u, f (0) = 0

which can be represented in the following state-dependent linear-
like form:

ẋ = A(x)Z(x) + B(x)u, (1)

where x ∈ Rn is the state and u ∈ Rm is the input. The vector Z(x),
whose dimension is assumed to be N , contains polynomials of x
and satisfies the assumption Z(x) = 0 ⇔ x = 0. The matrices
A(x) and B(x) are polynomial matrices of suitable dimensions.

For the above system, we aim to design a state-feedback con-
troller u = u(x) which belongs to the given input set U . Addi-
tionally, we assume that the closed-loop system is operated on a
compact domain X ⊂ Rn containing the origin. Throughout this
paper, we assume that X = {x | Z(x)TBX Z(x) ≤ 1} with a given
BX ≻ O. Since Z(x) can contain polynomials of higher degrees in x,
the regionX is not necessarily a standard ellipsoid but it represents
a more complicated operating region. As a performance measure
under the input u, we consider the quadratic cost function

J(x0, u) =

∫
∞

0
(Z(x)TQZ(x) + uTRu)dt, (2)

with given matrices Q ≻ O, R ≻ O, and the initial condition
x(0) = x0.

Let the optimal quadratic cost be J∗(x0), i.e.,

J∗(x0) = min
u∈U

J(x0, u), ∀x0 ∈ X ,

and let the input set U is characterized by the hypercube

U = {u ∈ Rm
| |uj| ≤ µj, j = 1, 2, . . . ,m},

which represents bounds on input magnitudes. Moreover, we es-
timate the region of attraction for the closed-loop system using a
level set of Lyapunov function [16], which is defined by

Ω = {x ∈ Rn
| V (x) ≤ ρ},

where V (x) is a Lyapunov function of the closed-loop system and
ρ is a positive constant. Since both V (x) and ρ are variables in

the design problem, we can assume without loss of generality that
ρ = 1 .

To guarantee that the controller u = u(x) will remain in the set
U for any x ∈ Ω , the following condition is required:

Ω ⊂ XU , (3)

where XU ≜ {x | |uj(x)| ≤ µj, j = 1, 2, . . . ,m} is the set of
all states such that the corresponding control inputs satisfy the
magnitude constraints characterized by U .

Computing the optimal cost J∗(x0), as well as the associate
optimal controller, leads to solving a Hamilton–Jacobi–Bellman
partial differential equation [17], which is computationally diffi-
cult. Therefore, we may instead find a controller that provides a
finite upper bound on the quadratic cost. This task can be done via
Lyapunov inequality as described in the following proposition (see,
for example, [17] for a proof).

Proposition 1. If there exist a continuously differentiable function
V : X → R, and a function û : X → Rm satisfying V (x) > 0 (∀x ∈

X \ {0}), V (0) = 0, and

∂V (x)T

∂x
(A(x)Z(x) + B(x)û)+

Z(x)TQZ(x) + ûTRû ≤ 0, ∀x ∈ X ,

(4)

then the closed-loop system is asymptotically stable with respect to
the zero equilibrium.Moreover, if the set-inclusion constraints (3) and
Ω ⊂ X hold, then for any initial condition x0 inside the level set Ω , it
yields that J∗(x0) ≤ J(x0, û) ≤ V (x0).

Note that searching for Lyapunov function V (x) and controller
u(x) satisfying (4) is still a difficult task. Nevertheless, choosing
a suitable characterization of V (x) and an input set U can lead
to a convex condition for the controller design. Details will be
explained in the next section.

Remark 1. Based on the assumption f (0) = 0, it is always possible
to find a polynomial matrix A(x) such that f (x) = A(x)x. Moreover,
the representation f (x) = A(x)x can be rewritten as

f (x) =
[
A(x) O

] [
x

Z̃(x)

]
where Z̃(x) contains monomials or polynomials of higher degrees
in x. This implies that the state-dependent linear-like representa-
tion (1) always exists, where choice of Z(x) is not unique.

When Z(x) is fixed, it is not difficult to show that choice of
A(x) is also not unique. Precisely speaking, if the representation (1)
exists for a polynomial matrix A0(x), then it also exists for A(x) =

A0(x)+N(x), whereN(x) is a non-zero polynomialmatrix satisfying
N(x)Z(x) = O.

3. State-feedback control

In order to find V (x) and u(x) satisfying constraints in Proposi-
tion 1, we choose a candidate Lyapunov function of the form

V (x) = Z(x)TP−1(x)Z(x), (5)

where P(x) is a symmetric polynomial matrix of dimension N × N
in x and P(x) ≻ O, ∀x ∈ X . Moreover, the controllers are
parametrized by u = K (x)Z(x) with a proper matrix K (x). Note
here that V (x) and K (x) are extended to rational functions of x. For
Lyapunov function of the form (5), the corresponding level set is

Ω(P) = {x ∈ Rn
| Z(x)TP−1(x)Z(x) ≤ 1}.

We put the argument P(x) in the notation of Ω to indicate that the
shape and the size of the level set depend on P(x).
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