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a b s t r a c t

A new controller synthesis technique is presented which allows the design of output feedback control
systems achieving robust regional pole clustering in the presence of parametric uncertainties as well as
satisfying prescribed structural constraints. Such features are rarely jointly present in currently available
controller synthesis methods. The central idea in the proposed approach consists in reformulating the
original robust pole placement problem into an equivalent robust stabilization problem involving highly
structured controller and uncertainty. A numerical application corroborating the applicability of the
proposed synthesis technique is also presented.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Closed-loop robustness in the presence of parametric uncer-
tainty represents a primary design objective in anymodern control
system synthesis method, e.g. sliding mode [1], adaptive [2] or
robust [3] control. In the particular case of linear time invariant
systems, an appealing robust controller synthesis technique is
regional pole placement. As well-known, by clustering the closed-
loop poles in appropriate regions of the complex plane, the design
engineer can set bounds on the damping ratio, the decay rate or
the undamped natural frequency of the closed-loop modes, and
hence shape time-domain parameters of the system response,
e.g. rise time, settling time or overshoot. As noted in [4], from an
application viewpoint, regional pole clustering is more important
than exact pole assignment. The reader is referred, e.g. to [5,4] and
the references within for earlier research on the subject.

In the seminal work [6], sufficient conditions are obtained for
pole placement in a general class of convex regions of the complex
plane defined by linearmatrix inequalities (LMI) constraints. Inter-
estingly, the resulting controller synthesis problem can be solved
very efficiently via semidefinite programming tools. Moreover, in
the LMI framework, pole placement constraints can be considered
simultaneouslywith other design criteria, e.g.H∞ constraints. That
technique has been expanded in [7] so as to address the so-called
robust D-stabilization problem, i.e. robust pole placement in LMI-
regions.

Different approaches have been proposed subsequently in the
literature dealing with robust D-stabilization. See, e.g., [8,9] and
references therein. Unfortunately, these techniques are limited to
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state feedback control and hence become inoperative in output
feedback control problems.

In the output feedback case, a notorious limitation of LMI-based
controller synthesis techniques is the difficulty in handling struc-
tural constraints on the control law itself. The LMI-based robust
pole placement technique in [7], for instance, can only produce
full-order output feedback controllers. In [10], an LMI technique is
described toperform robust pole placement on second-order linear
systems, but the only controller structure that can be handled is
proportional-derivative control. The technique in [11] allows the
design of fixed-orderH∞ controllers also achievingD-stabilization,
but the technique is limited to SISO systems.

The controller synthesis technique recently introduced in [3]
allows the design of reduced-order output feedback controllers
ensuring closed-loop robust D-stability, hence potentially over-
coming the difficulty of LMI-based techniques indicated above.
However, it is stated by the author that only systems with small
size can be handled, due to the associated computational burden.
The numerical applications discussed in [3], for instance, involve
only static controllers with a single tunable parameter.

The recurrent difficulty of LMI approaches in designing struc-
tured controllers is one of the main motivations behind the regain
of interest seen in the last decade in controller synthesis tech-
niques based on nonsmooth optimization, e.g. [12–19]. Another
motivation lies in the numerical difficulties that LMI and bilinear
matrix inequalities (BMI) [20] techniques tend to face for problems
of moderate size. Such a difficulty is mainly due to the presence
of Lyapunov variables, whose number grows quadratically with
the order of the closed-loop system [13]. Nonsmooth controller
synthesis techniques, on the other hand, can handle systems with
dozens of states, even hundreds, see e.g. [21,22].

Pole placement constraints appearing initially in the afore-
mentioned nonsmooth optimization-based synthesis techniques
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involved essentially half-plane constraints via the spectral abscissa
function [12,23,13,21]. More recently, however, a more general
region of the complex plane has been considered in [17] specifi-
cally for pole placement. The synthesis technique in [17] allows the
design of structured controllers achieving regional pole placement,
but it unfortunately presents a serious inconvenience: similarly as
in [6], robustness of the pole clustering is not explicitly addressed,
but instead handled indirectly via an additional H∞ constraint. As
well known, unscaledH∞ constraints are not themost appropriate
way to deal with structured uncertainties, e.g. parametric uncer-
tainties [24].

In the present work, a new controller synthesis technique is
introduced that allows the design of output feedback controllers
satisfying prescribed structural constraints as well as achieving
robust pole placement in the presence of parametric uncertainties.
The central idea in the proposed approach is to reformulate the
original robust pole placement problem into an equivalent robust
stabilization problem, which can be interpreted as a particular
µ-synthesis [25] problem involving highly structured uncertainty
and controller. The resulting synthesis problem can then be solved
efficiently by means of a recently introduced parametric robust
structured control design technique [18].

The paper is organized as follows. In Section 2, it is discussed
how the pole clustering robustness can be assessed via an equiva-
lent robust stability condition. In Section 3, the considered robust
pole placement synthesis problem is formulated, and its solution
is discussed. A numerical application illustrating the validity of
the proposed approach is then presented in Section 4. Section 5
concludes the paper.
Notation: For a given real matrix A ∈ Rn×n, λi[A] stands for the set
of n eigenvalues ofA, i.e.λi[A] ≜ {λ ∈ C : det(λI−A) = 0}, whereas
α(A) denotes the spectral abscissa of A, i.e. α(A) ≜ max{Re(λ) :

λ ∈ λi[A]}. If every eigenvalue of matrix A has strictly negative real
part, then A is called a Hurwitz matrix. Symbol ⊗ stands for the
Kronecker product. For a given matrix H ∈ Cn×m, σ (H) stands for
its largest singular value. For a complex matrix P partitioned as

P =

[
P11 P12
P21 P22

]
∈ C(p1+p2)×(q1+q2),

and a matrix ∆ ∈ Cq1×p1 , notation ∆ ⋆ P stands for the classical
upper linear fractional transformation (LFT) [24] given by

∆ ⋆ P ≜ P22 + P21∆(I − P11∆)−1P12.

For two transfers G and H, notation (G,H) stands for the closed-
loop interconnection{

y = Gu,
u = Hy.

2. Robust D-stability analysis

Consider the uncertain linear time-invariant system

ẋ(t) = (∆ ⋆ M)x(t), (1)

where M ∈ R(r+n)×(r+n) represents the nominal state matrix and
∆ ∈ ∆ ⊂ Rr×r represents a block diagonal uncertainty matrix
whose structure is given by

∆ ≜
{
∆ = diag(δr1Ik1 , . . . , δ

r
mr

Ikmr ) : δri ∈ R
}
. (2)

The unit ball in ∆ is denoted by B∆ ≜ {∆ ∈ ∆ : σ (∆) ≤ 1}.
Let D denote the non-empty region of the complex left-half

plane depicted in Fig. 1, constructed as the intersection of a disk,
a half plane and a wedge, as follows:

D(q, r, τ , θ, γ ) ≜ Ωc(q, r) ∩ Ωhp(τ ) ∩ Ωw(θ, γ ), (3)

Fig. 1. Region D(q, r, τ , θ, γ ) for robust pole placement.

with γ , q ∈ R, τ , r ∈ R>0, θ ∈ (0, π/2), and

Ωc(q, r) ≜
{
s ∈ C : (Re(s) + q)2 + Im(s)2 < r2

}
, (4)

Ωhp(τ ) ≜ {s ∈ C : Re(s) < −τ } , (5)
Ωw(θ, γ ) ≜ {s ∈ C : tan(θ ) (Re(s) − γ ) + |Im(s)| < 0} . (6)

It is to be recalled that the uncertain system (1) is said to
be robustly stable if it is stable for all allowable uncertainty, or
equivalently, if the eigenvalues of the state matrix (∆ ⋆ M) lie in
the open-left half plane for all ∆ ∈ B∆. If, moreover, the poles
of the uncertain system (1) lie in D for all allowable uncertainty,
i.e., λi[∆ ⋆ M] ∈ D for all ∆ ∈ B∆, then the uncertain system is
said to be robustly D-stable.

The following theorem, which states the main result of this
section, provides a suitable necessary and sufficient condition for
the robust D-stability of the uncertain system (1).

Theorem 1. Consider a non-empty region D(q, r, τ , θ, γ ), with q ̸=

r, and let

Γ (q, r) ≜

⎡⎢⎢⎣
q + r
q − r

1
q − r

−2r
q − r

−1
q − r

⎤⎥⎥⎦⊗ In. (7)

Then, the uncertain system (1) is robustly D-stable if and only if the
system

ẋ(t) = A∆x(t), (8)

with

A∆ ≜ diag

(
Γ ⋆ (∆ ⋆ M), (∆ ⋆ M) + τ In,[

sin(θ ) − cos(θ )
cos(θ ) sin(θ )

]
⊗ ((∆ ⋆ M) + γ In)

)
, (9)

is robustly stable.

Proof. For a given matrix A ∈ Rn×n, let

Ac(q, r) ≜ Γ (q, r) ⋆ A, (10)
Ahp(τ ) ≜ A + τ In, (11)

Aw(θ, γ ) ≜
[
sin(θ ) − cos(θ )
cos(θ ) sin(θ )

]
⊗ (A + γ In). (12)
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