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a b s t r a c t

This paper discusses the problem of input-to-state stability (ISS) of time-varying impulsive delayed
systems. By introducing a switching parameter and using the notion of average impulsive interval,
a unified Razumikhin-type criterion on ISS which is simultaneously effective for stabilizing impulses
and destabilizing impulses is derived. The condition which requires the coefficient of the estimated
upper bound of the derivative of a Lyapunov function to be constant in the existing results on ISS of
impulsive systems is weakened. The results in this paper allow the coefficient of the derivative of a
Lyapunov function to be time-varying function which can be both positive and negative and may even be
unbounded. Furthermore, the impulsive intervals of an impulsive sequence are allowed to have arbitrarily
small lower bound and large enough upper bound simultaneously. As a by-product, a unified criterion
on ISS for time-varying impulsive delay-free systems is also presented. Two examples are presented to
illustrate the effectiveness of our results.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the concept of input-to-state stability
(ISS) which was introduced by Sontag in [1] has played important
role in stability analysis and control system design. In the past
nearly thirty years, various extensions of the ISS properties have
since been made for many types of dynamical systems such as
discrete systems [2], delayed systems [3–6], impulsive systems
[7–9], impulsive delayed systems [8,10–15], etc.

In this paper, we are concerned with the ISS properties of time-
varying impulsive delayed systems (TVIDSs), with input signals
affecting both the continuous dynamics and the state impulsemap.
In general, there are two kinds of impulses in terms of stability
in impulsive systems. An impulsive sequence is said to be desta-
bilizing if the impulsive effect can suppress the stability of the
impulsive system. An impulsive sequence is said to be stabilizing
if a corresponding impulsive effect can enhance the stability of the
impulsive systems. In the current literature, there are some unified
criteria on ISSwhich are simultaneously valid for these twokinds of
impulses based on average impulsive interval (see [7,8,14]). There
are also some results on ISS which are devoted to investigated
these two kinds of impulses separately by using the lower bound
of impulsive intervals for destabilizing impulses and the upper
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bound of impulsive intervals for stabilizing impulses (see [10–13]).
However, all of the results require the coefficients of the estimated
upper bound for the time-derivative of a Lyapunov function or a
Lyapunov functional to be constant numbers. As shown by exam-
ples in Section 4, the existing results cannot be applied to analyze
such systems. Hence, it is necessary and interesting to general-
ize the existing theory by allowing derivative associated with a
Lyapunov function or a Lyapunov functional to satisfy a weaker
assumption, which involves time-varying coefficients. Recently,
Lyapunov stability and ISS properties are investigated byusing Lya-
punov function or Lyapunov functional whose time-derivative can
take both positive and negative values for continuous time-varying
dynamical systemswith andwithout delays [5,6,16–20]. However,
as far aswe know, there are few results on ISS of impulsive systems
by Lyapunov functions with indefinite derivatives.

This paper aims to establish a unified Razumikhin-type cri-
terion on ISS of TVIDSs which is simultaneously effective for
stabilizing impulses and destabilizing impulses under average
impulsive interval condition. With the help of notions of a scalar
uniformly exponentially stable function (UESF) introduced in [18]
and average impulsive interval, the criterion of this paper allows
the estimated upper bound of the derivative of the Lyapunov func-
tion to have time-varying coefficient (the coefficient may be sign-
changing or unbounded function), and the impulsive sequence
is allowed to have arbitrarily small lower bound and sufficiently
big upper bound for impulsive intervals simultaneously. As a by-
product, a unified criterion on ISS for time-varying impulsive
delay-free systems can also be provided easily.
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This paper is organized as follows. In Section 2, the time-varying
impulsive delayed system is presented, together with some def-
initions and two lemmas. A new Razumikhin-type criterion is
obtained to ensure the ISS properties of TVIDSs in Section 3, and
a criterion on ISS for time-varying impulsive systems without
time-delays is also given. Finally, two examples are presented to
illustrate the effectiveness of our results.

Notation: Throughout this paper, unless otherwise specified, we
use the following notations. Let R = (−∞,+∞), R+

= [0,+∞),
N = {1, 2, . . .}, Na,b = {a, a + 1, . . . , b} for a, b ∈ N and a ⩽ b. If x
and y are real numbers, then x ∨ y and x ∧ y denote the maximum
and minimum of x and y, respectively. If A is a vector or matrix,
its transpose is denoted by AT . For x ∈ Rn, let |x| =

√
xT x be

the Euclidean vector norm. For −∞ < a < b < ∞, we use the
notation PC([a, b];Rn) to denote the class of functions from [a, b]
to Rn satisfying the following: (i) it has at most a finite number
of jump discontinuities on (a, b], i.e., points at which the function
has finite-valued but different left-hand and right-hand limits;
(ii) it is continuous from the right at all points in [a, b). For ψ ∈

PC([a, b];Rn), its norm is defined as ∥ψ∥[a,b] = supa⩽s⩽b|ψ(s)|.
We say that a function ψ : [a,∞) → Rn belongs to the class
PC([a,∞);Rn), ifψ |[a,b] (ψ restricted on [a, b]) is in PC([a, b];Rn)
for all b > a. Given τ > 0, a norm on PC([−τ , 0];Rn) is defined
as ∥φ∥ = ∥φ∥[−τ ,0] for φ ∈ PC([−τ , 0];Rn). For simplicity, PCτ
is used for PC([−τ , 0];Rn) for the rest of this paper. Given x ∈

PC([t0−τ ,∞);Rn) and for each t ∈ [t0,∞), let xt be an element for
PCτ defined by xt (θ ) := x(t + θ ), −τ ⩽ θ ⩽ 0. Let K represent the
class of continuous strictly increasing function χ : R+

→ R+ with
χ (0) = 0. K∞ is the subset of K functions that are unbounded. A
functionϖ : R+

×R+
→ R+ is said to be the classKL, ifϖ (·, t) is

of classK for each fixed t > 0 andϖ (s, t) decreases to 0 as t → ∞

for each fixed s ⩾ 0.

2. Preliminaries

Consider the time-varying impulsive system of the following
form:⎧⎨⎩x′(t) = f (t, xt , uc(t)), t ̸= tk, t ⩾ t0

x(tk) = Ik(tk, x(t−k ), ud(t−k )), t = tk, k ∈ N
x(t0 + s) = φ(s), − τ ⩽ s ⩽ 0

(1)

where x(t) ∈ Rn is the system state, x′(t) denotes the right-hand
derivative of x(t), uc ∈ PC([t0,∞);Rm1 ) denotes the disturbance
input, ud ∈ PC([t0,∞);Rm2 ) denotes the impulsive disturbance
input. f : R+

× PCτ × Rm1 → Rn. The initial function φ ∈ PCτ .
The impulsive functions Ik : R+

× Rn
× Rm2 → Rn(k ∈ N), and

the impulsive instants tk(k = 1, 2, . . .) satisfy 0 ⩽ t0 < t1 < t2 <
· · · and limk→∞tk = ∞. We define g(t, ψ) = f (t, ψ, uc(t)) and
suppose that g : R+

× PCτ → Rn is composite-PC (i.e., for any
function x ∈ PC([t0 − τ ,∞);Rn), the composite function t ↦→

g(t, xt ) is in PC([t0,∞);Rn)), quasibounded, and locally Lipschitz
in its second variable so that system (1) has a unique solution
x(t, t0, φ) which exists in a maximal interval [t0 − τ , b), where
t0 < b ⩽ ∞ (see [21]). In addition, we assume that f (t, 0, 0) ≡ 0
and Ik(tk, 0, 0) ≡ 0 for all t ⩾ t0 so that system (1) admits a trivial
solution x(t) ≡ 0.

Definition 1 ([10]). For the prescribed impulsive sequence {tk, k ∈

N}, system (1) is said to be input-to-state stable (ISS), if there exist
functions ϖ ∈ KL and γc , γd ∈ K∞, such that for every φ ∈ PCτ
and every pair of input (uc, ud), the solution x(t) of (1) is globally
and satisfies
|x(t)| ⩽ ϖ (∥φ∥, t − t0) + γc(∥uc∥[t0,t])

+ γd( max
tk∈(t0,t]

{|ud(t−k )|}), t ⩾ t0. (2)

Definition 2 ([7,22]). For an impulsive sequence {tk, k ∈ N}, let
N(t, s) be the number of instant tk in the semi-open interval (s, t].
If
t − s
Ta

− N0 ⩽ N(t, s) ⩽
t − s
Ta

+ N0 (3)

for Ta > 0, N0 > 0, then Ta and N0 are called the average impulsive
interval (AII) and the elasticity number, respectively.

Remark 1. In [22], the authors gave a specific impulsive sequence
{tk, k ∈ N} satisfying (3) as shown in the following form:

tk − tk−1 =

{
ϵ if mod(k,N0) ̸= 0,
N0(Ta − ϵ) + ϵ if mod(k,N0) = 0 (4)

where ϵ and Ta are positive numbers satisfying ϵ ⩽ Ta, and N0 ∈ N.
Wehave infk∈N{tk−tk−1} = ϵ and supk∈N{tk−tk−1} = N0(Ta−ϵ)+ϵ.
When ϵ is sufficiently small and N0 is sufficiently large, infk∈N{tk −

tk−1} will be small, and supk∈N{tk − tk−1} will be large.

Definition 3. A function V : [t0 − τ ,∞) × Rn
→ R+ is said to

belong to class ν0, if V is continuous on each of the sets [tk−1, tk)×
Rn, lim(t,y)→(t−k ,x)

V (t, y) = V (t−k , x) exists. For V ∈ ν0, the upper
right-hand derivative of V with respect to system (1) is defined by
D+V (t, ψ(0)) = lim suph→0+

1
h [V (t + h, ψ(0) + hf (t, ψ, uc(t))) −

V (t, ψ(0))], for t ∈ [tk−1, tk) (k ∈ N), ψ ∈ PCτ .

We introduce the concept of uniformly exponentially stable
function (UESF) proposed in [18]. Consider the following scalar
linear time-varying (LTV) system:

y′(t) = µ(t)y(t), t ∈ J = [t#,∞), (5)

where y : J → R is the state variable and µ ∈ PC(J;R).

Definition 4 ([18]). The function µ ∈ PC(J;R) is said to be
uniformly exponentially stable with guaranteed decay rate α(UES
[WGDR α]) if system (5) is UES [WGDR α], namely, there exist
constants k > 0 and α > 0 such that

|y(t)| ⩽ k|y(t0)| exp(−α(t − t0)), ∀t ⩾ t0 ∈ J. (6)

Lemma 1 ([18]). The scalar function µ ∈ PC(J;R) is UES [WGDR α]
if and only if there exist constants α > 0 and β ⩾ 0 such that∫ t

t0

µ(s)ds ⩽ −α(t − t0) + β, ∀t ⩾ t0 ∈ J. (7)

The following lemma will also be needed to obtain our main
results.

Lemma 2. Assume that the function γ ∈ K. The inequality

γ (x + y + z) ⩽ γ (3x) + γ (3y) + γ (3z)

holds for all x ⩾ 0, y ⩾ 0 and z ⩾ 0.

Proof. Noting that γ ∈ K, for any non-negative numbers x, y and
z, we have

γ (x + y + z) ⩽

{
γ (3x) if x ⩾ y ∨ z
γ (3y) if y ⩾ z ∨ x
γ (3z) if z ⩾ x ∨ y.

Therefore
γ (x + y + z) ⩽ max{γ (3x), γ (3y), γ (3z)}

⩽ γ (3x) + γ (3y) + γ (3z)

for all x ⩾ 0, y ⩾ 0 and z ⩾ 0.
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