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a b s t r a c t

In stability analysis and control design for a systemwith stochastic delay, it is a question whether one can
approximate the stochastic system, for instance in the sense of average, with a deterministic system that
has a finite number of discrete delay terms with the same delays that appear in the stochastic system and
the weight coefficients of these delayed terms are taken from the probability distribution function of the
stochastic delay. In this note, we consider a linear system with stochastic delay and discuss conditions
under which this approximation is valid and conditions where it is not. In particular, we assume that
the delay has piece-wise constant realizations with constant dwelling time at each value and show that
the above mentioned approximation loses its grounds when the delay dwelling time gets larger than the
minimum delay in the system.

Published by Elsevier B.V.

1. Introduction

Consider the linear system

ẋ(t) = a x(t) + b x(t − τ (t)), (1)

where the delay τ (t) stochastically changes in a finite set Ω =

{τ1, τ2, . . . , τK } while it dwells at each value a fixed amount of
time td. In particular, the changes in the delay occur at times ntd,
n = 0, 1, 2, . . ., while new delay values are chosen according to
the probability distribution P

(
τ (t) = τk

)
= wk, k = 1, . . . , K .

Consider also the deterministic system

ẋ(t) = a x(t) + b
K∑

k=1

wk x(t − τk) (2)

which contains, in the right hand side, a finite number of discrete
(point) delay terms where the delays are the same as in the set Ω
and theweight coefficients of the discrete delay terms are the same
as the probability distribution wk, k = 1, . . . , K .

In analyzing the stability of the stochastic system (1) in engi-
neering applications, it is a question whether one could consider
the deterministic system (2) as an approximation for the mean
of the stochastic system (1). For instance in connected vehicle
systems, stochastic delays arise due to the random packet loss in
wireless communication between vehicles [1]. Similarly in net-
worked control systems, the communication delays in wireless
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communication channels may change stochastically in time [2,3].
In this paper, we show that the approximation of the mean of
the stochastic system (1) by the deterministic system (2) can be
completely misleading.

In particular, we consider the linear system (1) where a, b ∈ R
and assume that the delay τ (t) can only take two delay values τ1
and τ2 where 0 < τ1 < τ2; a sample realization of the delay is
shown in Fig. 1a. The delay dwells in one value for a duration of
td (dwelling time) and then switches to a new value based on the
probability distribution P(τ = τ1) = w1, P(τ = τ2) = w2, where
w1 + w2 = 1. Using this simplistic behavior for the delay, we aim
to show that the dwelling time td can have a substantial effect on
the stability of the mean of the stochastic system (1) that cannot
be captured by the corresponding deterministic system (2). The
use of scalar versions of systems (1) and (2) and the assumption
that the delay can assume only two values are for the sake of the
brevity of the notation and clarity in conveying the message of the
paper. The results of the paper hold for the general vector case
(i.e. x ∈ Rq and a, b ∈ Rq×q where q is the dimension of vector
x) with arbitrary K ∈ N delays in the set Ω . Our approach is to
use a suitable time-discretization of the two systems (1) and (2)
and compare the stability of these systems through comparing the
spectra of the matrices emerging from the time-discretization of
the two systems.

2. Discretization and approximation of spectra

In this section, we obtain a time discretization of both systems
(1) and (2) which we will later use to compare the stability of
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these systems. To this aim, we first present the method of the
discretization of a deterministic system with a single fixed de-
lay using the semi-discretization technique developed in [4]. The
semi-discretization technique is a well-known time discretization
technique for delay differential equations and widely-used in en-
gineering applications [4–6].

2.1. Discretization of a system with a single fixed delay

Consider the following deterministic systemwith a single fixed
delay

ẋ(t) = a x(t) + b x(t − τ ). (3)

By substituting the trial solution x(t) = κeλt in Eq. (3), we may
obtain the corresponding characteristic equation

λ − a − b e−λτ
= 0 (4)

where λ is a characteristic root. System (3) is stable if and only if
all characteristic roots are located in the left-half complex plane.

Now consider the mesh ti = i∆t , i = 0, 1, 2, . . .. Let m =

⌊τ/∆t⌋. Now in the time interval [i∆t, (i + 1)∆t], we use the
approximation x(t − τ ) ≈ x(i∆t − m∆t) in (3) and solve the
resulting ordinary differential equation ẋ(t) = a x(t) + b x

(
(i −

m)∆t
)
to obtain

x
(
(i + 1)∆t

)
= α x(i∆t) + β x

(
(i − m)∆t

)
, (5)

where α = ea∆t and β =
b
a (e

a∆t
− 1),

(
β = b∆t if a = 0

)
.

Now forming an augmented state vector X(i) =
[
x(i∆t), x

(
(i −

1)∆t
)
, . . . , x

(
(i−m)∆t

)]T, (T denotes the transpose) that contains
a history of the state values in the lastm time steps, we arrive at

X(i + 1) = T (∆t)X(i), (6)

where

T (∆t) =

⎡⎢⎢⎢⎢⎣
α β

1
1

. . .

1

⎤⎥⎥⎥⎥⎦
(m+1)×(m+1)

. (7)

Note that all sub-diagonal elements are 1 and the 0 elements are
not shown. The matrix T (∆t) can be called the evolution matrix
of system (3) since it is a finite-dimensional approximation of the
infinite-dimensional solution operator of the linear system (3) [4].

Assume µ is an eigenvalue of T (∆t). Then, as ∆t → 0, 1
∆t lnµ

approaches a characteristic root given by (4); i.e. 1
∆t lnµ → λ.

Therefore, one can obtain stable and unstable regions of system
(3) in the parameter space by investigating the leading eigenvalues
(largest eigenvalues in magnitude) of T (∆t) that are calculated
for a sufficiently small ∆t value. Note that the larger the mag-
nitude of µ the bigger the real part of 1

∆t lnµ. See [4] for more
details about the convergence properties of the semi-discretization
method and [7] for more information on the discretization of the
delay differential equations and approximating their spectra using
other numerical techniques. In the next section, we investigate the
difference in stability properties of systems (1) and (2) exploiting
the semi-discretization of the two systems.

2.2. Stability of systems (1) and (2) using their finite-dimensional
approximations

We first apply the discretization method described in the pre-
vious section to the stochastic system (1). We choose ∆t such that

Fig. 1. (a) A sample path of the delay with two values τ1 and τ2 and dwelling time
td . (b) The dwelling time td is discretized to ℓ time steps such that td = ℓ∆t (ℓ = 3
in this case).

td = ℓ∆t where ℓ is an integer.We also assumem1 = ⌊τ1/∆t⌋ and
m2 = ⌊τ2/∆t⌋ where m1 < m2. Using the augmented state vector
X(i) =

[
x(i∆t), x

(
(i − 1)∆t

)
, . . . , x

(
(i − m2)∆t

)]T, that contains a
history of the state values in the lastm2 time steps (corresponding
to the maximum delay), and similar to (6) and (7), the evolution
matrix of the system ẋ(t) = a x(t) + b x(t − τ1) is obtained as

columnm1 + 1
↓

T1(∆t) =

⎡⎢⎢⎢⎢⎣
α β

1
1

. . .

1

⎤⎥⎥⎥⎥⎦
(m2+1)×(m2+1)

,
(8)

and the evolution matrix of the system ẋ(t) = a x(t) + b x(t − τ2)
is obtained as

columnm2 + 1
↓

T2(∆t) =

⎡⎢⎢⎢⎢⎣
α β

1
1

. . .

1

⎤⎥⎥⎥⎥⎦
(m2+1)×(m2+1)

,
(9)

where α and β are the same as in (5). Now recall that the delay
changes every ℓ time steps; see Fig. 1b. Therefore, letting X̃(n) =

X(n ℓ), the discretization of the stochastic system (1) is given by the
stochastic map

X̃(n + 1) = A(n)X̃(n), (10)

n = 0, 1, 2, . . ., where A(n) =
(
Tk(∆t)

)ℓ if τ (t) = τk in the time

interval [nℓ∆t, (n+ 1)ℓ∆t), and therefore P
(
A(n) =

(
Tk(∆t)

)ℓ
)

=

wk, k = 1, 2.
Now we take the expectation of both sides of (10). Since the

probability distribution of the delay is fixed and is independent of
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