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a b s t r a c t

This paper proposes a novel interval observer design method for discrete-time linear systems with
unknown but bounded disturbance and measurement noise. The proposed interval observer has a new
structure that provides more design degrees of freedom. A direct method based on H∞ technique is used
to improve the accuracy of interval estimation. The design conditions are formulated into linear matrix
inequalities, which can be efficiently solved. Two numerical examples are given to illustrate the design
and validate the performance of the interval observers.
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1. Introduction

State estimation is important in practical control applications as
measuring all state variables is often difficult. Therefore, observer
design and filter design have received considerable attention over
the past decades [1–3]. For instance, [4] proposes a generalized
state observer for an array of Markovian coupled networks under
the round-robin protocol and redundant channels. An H∞ filter is
designed in [5] to achieve fault detection for networked systems
with uncertainties and incomplete information. In [6], a codesign
method comprising event-triggered and distributedH∞ filtering is
proposed and applied to a suspension system. Based on a general
assumption that the disturbance is unknown but bounded, interval
observer can estimate the admissible bounds of the state variables
using available information. This practical estimation technique
has found applications in awide range of areas including biological
systems and bioreactors [7,8], nonlinear systems control [9], and
fault detection and diagnostics [10,11].

In recent years, a number of interval observer design methods
have been proposed [7,10,12–14]. The most commonly used tech-
nique is the cooperative error approach based on the monotone
system theory [15]. The main idea of this method is to design
the observer such that the error system is both cooperative and
stable. For instance, consider a discrete-time error system ek+1 =

(A − LC)ek. The interval observer design requires not only Schur
stability for A− LC but also that all the elements of A− LC are non-
negative. Note that the conventional observer design only requires
A − LC to be Schur stable. Compared with the design of a conven-
tional observer, the interval observer design has extra constraints
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of non-negativity, which may lead to more theoretical difficulty
and computational complexity in searching for a gain matrix L to
simultaneously ensure the non-negativity and stability of the error
system. Therefore, it is non-trivial to design an interval observer. To
handle the design difficulty, several methods based on coordinate
transformation have been proposed to obtain more relaxed design
conditions [12,13,16]. For an interval observer, it is desirable to
generate a robust cooperative error system such that the estimated
lower and upper bounds are close to the state variables. As pointed
out in [17], although the methods based on coordinate transfor-
mation can simplify design conditions, its limitation is that the
coordinate transform matrix and the observer gain matrix cannot
be simultaneously synthesized to fulfill the cooperative property
and other performance such as robust constraint.

Interval observer design can be converted into solving a set of
linearmatrix inequalities (LMIs) or linear program, see e.g. [14,16],
and [18]. However, the obtained LMIs are still restrictive and solu-
tionsmaynot exist for some systems.We further observe thatmost
existing interval observer design methods focus on continuous-
time systems, and there are limited results on the discrete-time
cases [19–22]. In view of these major gaps, we propose a new
interval observer design method for uncertain discrete linear sys-
tems. Motivated by [14], the proposed interval observer design
method in this paper is based on LMIs. This study has two main
contributions. First, we develop a new observer structure that not
only provides more design degrees of freedom but also relaxes
the design conditions. Second, the method takes into account the
effects of process disturbance and measurement noise by incorpo-
rating H∞ technique to attenuate uncertainties in order to obtain
accurate interval estimation.
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The remainder of this paper is organized as follows. The studied
problem and some preliminaries are briefly introduced in Sec-
tion 2. Section 3 proposes an interval observer with new structure
and presents an LMI-based interval observer design method. In
Section 4, simulation results are given to illustrate the performance
of the proposed method, and the conclusion is given in Section 5.

Notation. In this paper, In denotes the n × n identity matrix, ∥x∥
represents the L2-norm of a signal xk, MT stands for the matrix
transposition of a matrix M and M† denotes the pseudo-inverse
ofM . The max operator and the symbols ≥, >, ≤, and < on vectors
andmatrices are applied elementwise. For a real symmetricmatrix
P , P ≻ 0 (P ≺ 0) indicates that P is positive definite (negative
definite). An asterisk ∗ is used to represent a term induced by
symmetry.

2. Problem formulation and preliminaries

Consider the following discrete-time linear system:{
xk+1 = Axk + Bwk
yk = Cxk + vk

(1)

where xk ∈ Rn, yk ∈ Rm, wk ∈ Rp and vk ∈ Rm, are the state
vector, themeasured output vector, the unknown disturbance, and
the measurement noise, respectively, and A, B and C are constant
matrices of appropriate dimensions. It is assumed that the initial
state x0 is bounded and the disturbancewk andmeasurement noise
vk are bounded as

w−
≤ wk ≤ w+, v−

≤ vk ≤ v+ (2)

where w−, w+, v− and v+ are known constants.

Remark 1. For notational simplicity, the control input in system
(1) is excluded. It should be noted that the proposed method can
readily be applied to the system with control input uk since uk is
usually known in an observer design.

We aim to develop an interval observer which consists of two
dynamical systems to estimate the upper and lower bounds of state
xk, respectively. To this end, we first give the following lemmas.

Lemma 1 ([23]). Given a vector xk with x−

k ≤ xk ≤ x+

k and a matrix
A, the following inequality holds:

A+x−

k − A−x+

k ≤ Axk ≤ A+x+

k − A−x−

k (3)

where A+
= max {0, A} and A−

= A+
− A.

Lemma 2 ([16]). Any solution of the system

xk+1 = Axk + wk (4)

with wk ∈ Rn
+
and a nonnegative matrix A ∈ Rn×n

+ , is elementwise
nonnegative for all k ≥ 0, provided x0 ≥ 0.

Lemma3 ([24]). GivenmatricesX ∈ Ra×b,Y ∈ Rb×c , andZ ∈ Ra×c ,
with rank(Y) = c. The general solution of XY = Z is

X = ZY†
+ S(I − YY†) (5)

where S ∈ Ra×b is an arbitrary matrix.

Lemma 4 ([25]). Given a scalar γ > 0. The discrete-time system
described by{
xk+1 = Axk + Bdk
zk = Cxk + Ddk

(6)

Fig. 1. The block diagram of the proposed interval observer.

is stable and satisfies ∥z∥ < γ ∥d∥, if and only if there exists a matrix
P ≻ 0 such that[
ATPA + CTC − P ATPB + CTD
BTPA + DTC BTPB + DTD − γ 2I

]
≺ 0 (7)

3. Interval observer design

We propose the following interval observer for system (1):⎧⎪⎪⎨⎪⎪⎩
ζ̄k+1 = TAx̂+

k + L(yk − Cx̂+

k ) + ∆+

k
x̂+

k = ζ̄k + Nyk
ζ
k+1

= TAx̂−

k + L(yk − Cx̂−

k ) + ∆−

k
x̂−

k = ζ
k
+ Nyk

(8)

where ζ̄k ∈ Rn and ζ
k

∈ Rn are intermediate variables, x̂+

k ∈ Rn

and x̂−

k ∈ Rn are the estimated upper and lower bounds of xk,
respectively, and ∆+

k ∈ Rn and ∆−

k ∈ Rn are given as

∆+

k = (TB)+w+
− (TB)−w−

+ L+v+
− L−v−

+ N+v+
− N−v−, (9)

∆−

k = (TB)+w−
− (TB)−w+

+ L+v−
− L−v+

+ N+v−
− N−v+.

(10)

In (8), T ∈ Rn×n, N ∈ Rn×m and L ∈ Rn×m are the matrices to be
designed, with T and N satisfying

T + NC = In. (11)

Remark 2. The structure of observer (8) is inspired by [26]. Note
that the proposed observer is causal since no futuremeasurements
are used in its implementation. Fig. 1 shows the block diagram of
the proposed interval observer.

By defining the estimation error as

e+

k = x̂+

k − xk, e−

k = x̂−

k − xk (12)

and using (1), (8) and (11), we obtain the following error system:{
e+

k+1 = (TA − LC)e+

k + ∆+

k − TBwk + Lvk + Nvk+1
e−

k+1 = (TA − LC)e−

k + ∆−

k − TBwk + Lvk + Nvk+1
(13)

For brevity, we define

d+

k =

⎡⎣∆+

k − TBwk
vk

vk+1

⎤⎦ , d−

k =

⎡⎣∆−

k − TBwk
vk

vk+1

⎤⎦ (14)
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