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a b s t r a c t

This paper proposes methods to handle the problem of delay range stability analysis for a linear coupled
differential–difference system (CDDS) with distributed delays subject to dissipative constraints. The
model of linear CDDS contains many models of linear delay systems as special cases. A novel Lyapunov–
Krasovskii functional with non-constant matrix parameters, which are related to the delay value polyno-
mially, is applied to derive stability conditions. By constructing this new functional, sufficient conditions
in terms of robust linear matrix inequalities (LMIs) can be derived, which guarantee range stability of a
linear CDDS subject to dissipative constraints. To solve the resulting robust LMIs numerically, we apply
the technique of sum of squares programming together with matrix relaxations without introducing
any potential conservatism to the original robust LMIs. Furthermore, the proposed methods can be
extended to solve delay margin estimation problems for a linear CDDS subject to prescribed dissipative
constraints. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed
methodologies.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Functional differential equations [1] are able to characterize a
dynamical process whose behavior is affected by its past values, i.e
a dynamical system conditioned by delay effects. To analyze the
stability property of such system, however, is non-trivial due to its
infinite dimensional nature. Twomajor directions, which are based
on either time [2] or frequency domain [3], have been investigated
to provide solutions to characterize how delays affect the stability
of a system.

For a linear delay system, the information of its stability can be
obtained by analyzing its corresponding spectrum. Many different
approaches [2,4] have been developed in frequency domain, which
can provide almost a complete stability characterization when the
delay systems exhibit certain structures. For more complex delay
structures such as distributed delays with general kernels, the
numerical schemes in [5–7] can produce reliable results verifying
system stability with given point-wise delay values, which suffer
almost no conservatism. Furthermore, themethod in [8] allows one
to calculate the value of H∞ norm of a delay system with known
point-wise delay values. However, to the best of our knowledge,
none of the existing spectral based approaches can handle the
problem of delay range stability analysis subject to performance
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objectives [9] for linear delay systems. Namely, to test whether a
delay system is stable and simultaneously dissipative [10] for all
delay value r ∈ [r1, r2] with respect to a supply function, where
the exact delay value r is unknown but bounded by r1 ≤ r ≤ r2
with known values r2 > r1 > 0.

On the other hand, constructing Krasovskii functional [2,10]
has been applied as a standard approach in time domain to an-
alyze the stability of a delay system. Many different functionals
(see [2,10,11] and the references therein) have been proposed
among existing literature [12,13] to analyze the problem of point-
wise delay stability. Compared to its frequency domain counter-
parts, time domain approaches may be more adaptable to handle
range stability analysis with performance objectives, though only
sufficient conditions can be derived. In [14,15], the results con-
cerning the range stability of a linear discrete delay system are
presented based on the principle of quadratic separation. On the
other hand, the solutions of the same problem have been proposed
based on constructing Krasovskii functionals in [16,17]. However,
no results, based on the Krasovskii approach, concerning range
stability analysis have been proposed when distributed delays
are considered.1 On the other hand, almost all existing Krasovskii
functionals in literature are based on constant matrix parameters,
which is a very conservative choicewhen it comes to range stability

1 The methods proposed in [18] can handle polynomials distributed delay ker-
nels. However, the approaches in [18] are derived not based on Krasovskii func-
tionals, but the principle of robust control (Quadratic Separation).
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analysis. This motivates one to propose new functionals to specif-
ically tackle the problem of range stability analysis considering
performance objectives or even further potential constraints.

In this paper, we propose methodologies which allow one to
conduct range stability analysis for a linear coupled differential–
difference system (CDDS) [19,20,21] subject to dissipative con-
straints. The linear CDDS model considered in this paper contains
distributed delay terms with polynomials kernels, which is able to
incorporate many models of time delay systems as special cases.
A novel Lyapunov–Krasovskii functional, with delay-dependent
matrix parameters, is applied to be constructed together with a
quadratic supply function to derive stability conditions. The re-
sulting sufficient conditions, expressed in robust LMIs, are able
to ensure the range stability and dissipativity of the linear CDDS
over a known delay interval. To solve the robust LMIs numerically,
we apply SoS programming [22,23] with the relaxation technique
in [24] to equivalently transfer the original polynomials optimiza-
tion problem into semidefinite programs with finite dimensions,
without introducing any potential conservatism. Furthermore, the
proposed scenario is extended to handle the problem of estimating
the margin of a stable delay interval with given dissipative con-
straints. Finally, we also prove that the resulting stability condi-
tions in this paper exhibit a hierarchical feasibility enhancement
similar to the one in [16].

The paper is organized as follows. In Section 2 we formulate
the linear CDDS model to be analyzed in this paper. Subsequently,
theoretical preliminaries are presented in Section 3 which provide
necessary tools to derive the main results in the following section.
In Section 4, the main results on range stability analysis incorpo-
rating dissipative constraints are presented, including remarks and
detailed explanations. Finally, we present several numerical exam-
ples in Section 5 to demonstrate the advantage of our proposed
schemes.

Notation

The notations in this paper follow standard rules. In addition,
we introduce certain new symbols for the sake of having efficient
presentations. We define T := {x ∈ R : x ≥ 0} and Sn

:=

{X ∈ Rn×n
: X = X⊤

}. We frequently apply the notations of
universal quantifier ∀ and the existential quantifier ∃ throughout
the paper. XY stands for the set containing all possible functions
defined from Y onto X. The notations ∥x∥q =

(∑n
i=1|xi|

q) 1
q and

∥f (·)∥p =
(∫

R |f (t)|pdt
) 1

p and ∥f (·)∥p =
(∫

R ∥f (t)∥p
2dt
) 1

p are the
norms/semi-norms associated with Rn and Lebesgue integrable
functions spaces Lp(R # R) and Lp(R # Rn), respectively. Sy(X) :=

X + X⊤ is the sum of a matrix with its transpose. A column
vector containing a sequence of objects is defined as Colni=1xi :=[
Rown

i=1x
⊤

i

]⊤
=
[
x⊤

1 · · · x⊤

i · · · x⊤
n

]⊤. The symbol ∗ is applied to de-
note [∗]YX = X⊤YX or X⊤Y [∗] = X⊤YX . We use On×n to indicate
a n × n zero matrix with the abbreviation On, whereas 0n denotes
a n × 1 column vector. The symbols ≺ and ≻ are used to denote
the relations of positive and negative definiteness, respectively,
whereas < and > indicate point-wise orders. (The corresponding
partial order relations of the aforementioned relations follow the
same rules). The diagonal sum of two matrices and n matrices
are defined as X ⊕ Y = Diag(X, Y ),

⨁n
i=1Xi = Diagn

i=1(Xi),
respectively. Furthermore, ⊗ stands for the Kronecker product.
Moreover, we assume the order of matrix operations as matrix
(scalars) multiplications > ⊗ > ⊕ > matrix (scalar) additions.
Finally, the notion of empty matrix, which follows the same def-
inition in Matlab (see https://au.mathworks.com/help/matlab/ref/
zeros.html?requestedDomain=www.mathworks.com), is applied
in this article to render our results more adaptable to the handling
of different problems. All the matrix operations concerning empty
matrices follow the same rules in Matlab.

2. Problem formulation

In this paper the linear CDDS

ẋ(t) = A1x(t) + A2y(t − r) +

∫ 0

−r
A3(r)Ld(τ )y(t + τ )dτ + D1w(t)

y(t) = A4x(t) + A5y(t − r) (1)

z(t) = C1x(t) + C2y(t − r) +

∫ 0

−r
C3(r)Ld(τ )y(t + τ )dτ + D2w(t)

Col (x(0), y(0 + ·)) = Col (ξ, φ(·)) ∈ Rn
× Ĉ([−r, 0) # Rν)

is considered, where x(t) ∈ Rn and y(t) ∈ Rν are the solution
of the coupled differential–difference equations in (1), w(·) ∈

L2(T # Rq) represents disturbance, z(t) ∈ Rm is the regulated
output. Furthermore, ξ ∈ Rn and φ(·) ∈ Ĉ([−r, 0) # Rn) are the
initial conditions where Ĉ(X # Rn) stands for the Banach space
of bounded right piecewise continuous functions with a uniform
norm ∥f (·)∥∞ := supτ∈X∥f (τ )∥2. The dimensions of the state
space matrices in (1) are determined by the indexes n; ν ∈ N and
m; q ∈ N0 := N ∪ {0}. Moreover, Ld(τ ) := ℓd(τ ) ⊗ Iν where
ℓd(τ ) ∈ Rd+1 contains polynomials at each row up to degree
d ∈ N0. A3(r) ∈ Rn×ϱ and C3(r) ∈ Rm×ϱ are polynomials matrices
of r with ϱ = (d + 1)ν. r is a constant but with unknown and
bounded values as r ∈ [r1, r2], where the values of r2 > r1 > 0 are
known. Finally, it is assumed ρ(A5) < 1 which ensures the input
to state stability of y(t) = A4x(t) + A5y(t − r) [19] where ρ(A5)
stands for the spectra radius of A5. Since ρ(A5) < 1 is independent
from r , thus this condition ensures the input to state stability of
y(t) = A4x(t) + A5y(t − r) for all r > 0.

Remark 1. Many delay related systems can be modeled by (1).
See [13,19] and the references therein. In comparison with the
CDDSmodel in [19], (1) takes disturbances into account and incor-
porates distributed delay terms with polynomials kernels at both
the state and output. In terms of real-time applications, the struc-
tures of A3(r), C3(r) can be justified by the fact that the distributed
delay gainmatrices can be related to the numerical values of r [25].
See a representative example by the Example 2 in [12].

3. Preliminaries

3.1. Legendre polynomials

Without losing generalities, we assume in this paper that
ℓd(τ ) = Coldi=0ℓi(r, τ ) in (1) consists of Legendre polynomials
[16,26,27,28]

ℓd(r, τ ) :=

d∑
k=0

(
d
k

)(
d + k
k

)(τ

r

)k
=

d∑
k=0

(
d
k

)(
d + k
k

)
τ kr−k (2)

∀d ∈ N0, ∀τ ∈ [−r, 0] where
∫ 0

−r ℓd(τ )ℓ⊤

d (τ )dτ =
⨁d

k=0
r

(2k+1) .

Note that the form of (2) is derived from the structure of Jacobi
polynomials [29] with α = β = 0 in [28].

Some properties of Legendre polynomials are summarized as
follows.

Property 1. Given d ∈ N0 and md(τ ) := Coldi=0τ
i, then the following

three properties hold for all r > 0.

• ∃!Ld(·) ∈

(
R(d+1)×(d+1)

[d+1]

)R+

, ∃!Λd ∈ R(d+1)×(d+1)
[d+1]

∀τ ∈ R, ℓd(τ ) = Ld(r)md(τ ) = Λd

[
d⨁

i=0

r−i

]
md(τ )

(3)
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