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a b s t r a c t

We present and mathematically analyze a singular stochastic control model for cost-effective and
ecologically-sound indirect population control strategy for fish-eating birds. Finding the optimal strategy
of a threshold type reduces to solving a variational inequality. We prove the unique existence of
its viscosity solution that is neither convex nor concave, which turns out to be a classical solution.
Comparative statics on the optimal threshold is performed as well to demonstrate practical implications
of the model.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic control theory provides simple and efficient mathe-
matical models for management of systems in a feed-back man-
ner [1–3]. The concept of singular stochastic control has especially
been discussed formanagement of resources towhich a threshold-
type control strategy is appropriate [4–6]. Finding an optimal strat-
egy in the context of stochastic singular control reduces to solving
a variational inequality (VI) having viscosity solutions [7].

A central issue in modern stochastic control theory is existence
and solvability of dynamic programming equations, nonlinear and
degenerate elliptic differential equations that govern the value
functions and associated optimal controls [7]. This is not a triv-
ial mathematical issue as the mathematical analyses carried out
in previous research on seemingly simple mathematical models
suggest [1–6]. This issue can be resolved by utilizing the concept
of viscosity solutions, which possess nice mathematical properties
such as certain stability and regularity [7].

This letter presents mathematical results on a conceptual sin-
gular stochastic control problem for indirect population control
of the fish-eating bird such as Phalacrocorax Carbo, which is an
urgent issue to be solved in inland fisheries [8,9]. The goal of the
problem is to find a management strategy for the bird population
so that its predation to fishery resources is suppressed while they
do not become extinct. A mathematical difficulty in dealing with
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the model is that the value function is neither convex nor concave,
which is different from in the conventional problems (Chapter 4.5
of [7]). This motivated us to employ a new constructive argument
to prove unique solvability of the VI. We show that the VI is
uniquely solvable in the viscosity sense. Practical implications of
the present model are briefly presented as well. This paper thus
contributes to both theory and application of a singular stochastic
control model.

The rest of this paper is organized as follows. Section 2 for-
mulates our stochastic control problem and derives the VI, which
is the main equation of this paper. Section 3 presents a classical
solution to the VI, but its uniqueness is not a trivial matter at this
stage. Section 4 then presents a series of mathematical analysis
results to prove the unique solvability of the VI in the viscosity
sense, and shows that the classical solution is indeed the unique
viscosity solution to theVI. A key here is a constructive argument to
restrict possible profiles of viscosity solutions. Section 5 concludes
this paper and presents future perspectives of our research. A
supplementary file focusing on a practical problem related to the
VI is also attached.

2. Mathematical model

We consider a cost-effective and ecologically-sound indirect
population control strategy for a population of a fish-eating bird.
The indirect population control here means not to kill the individ-
uals, but to effectively decrease growth rate of the population [10].
The time is denoted as t ∈ [0, ∞). The bird population dynamics is
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described by an Itô’s stochastic differential equation (SDE) with a
non-negative, unbounded, right-continuous, and adapted control
variable ηt for t ≥ 0 (Chapter 4.5.1 of [7]). The SDE to be controlled
is based on that of a geometric Brownian motion:

dXt = Xt (µdt + σdBt − dηt) , t ≥ 0, X−0 = x ≥ 0 (1)

where Xt is the population size of the bird at t , µ > 0 is the de-
terministic growth rate of the population, σ > 0 is the magnitude
of stochastic fluctuation of the population dynamics, Bt is the stan-
dard 1-DBrownianmotion. In the SDE (1),ηt represents decrease of
the growth rate of the population through the indirect population
control. The SDE (1) has a control variable that is singular in the
sense that it is neither continuous nor bounded.

The objective function to be maximized by the decision-maker,
the manager of the fish, with an appropriate ηt is set as

J (x, η) = −

∫
∞

0
e−δs (rXm

s − RXM
s

)
ds −

∫
∞

0
e−δsdηs (2)

where δ > 0 is the discount rate, r and R are the parameters
such that r > R > 0, and m and M are the parameters such that
0 < M < 1 < m < 2. The discount rate δ represents the attitude
of the decision-maker; larger (smaller) δ means that the decision-
maker performs the population control from a long-term (short-
term) viewpoint. This J represents the net profit of the decision-
maker. The term −rXm

s quantifies the loss of the fish by the bird
per unit time and RXM

s represents the ecosystem services per unit
time that the bird possibly provides [11,12]. The second term in the
right-hand side of (2) represents the cost of performing the indirect
population control.

The value function 8 (·) is the maximized objective function in
the sense of expectation:

8 (x) = sup
η

E [J (x, η)] = E
[
J
(
x, η∗

)]
, (3)

where E [·] is the expectation conditioned on X−0 = x ≥ 0 and
η∗ is an optimal control. According to the dynamic programming
principle (Chapter 4.3 of [7]), 8 (·) formally solves the VI

min
[
−L8 + rxm − RxM , x

d8

dx
+ 1

]
= 0, x > 0 (4)

subject to the boundary condition at the origin 8 (0) = 0 where
L = µx d

dx +
1
2σ

2x2 d2

dx2
− δ is the generator. The boundary condition

means that there is no profit and loss when there is no population.
Hereafter, the assumptions

2µ > σ 2 and

δ > µm +
σ 2

2
m (m − 1)

(
> µM +

σ 2

2
M (M − 1)

) (5)

is employed. In other words, the population does not become ex-
tinct when there is no intervention and the decision-maker wants
to control the bird population from a long-term viewpoint. The
following lemma is a consequence of the property of the process (1)
and the definition of J , which can be provedwith a straightforward
calculation. The lemmameans that8 is locally bounded and has at
most a polynomial growth rate.

Lemma 2.1.

Axm + BxM ≤ 8 (x) ≤
R (m − M)

δm

(
RM
rm

) M
m−M

, x ≥ 0 (6)

where

A =
−r

δ − µm −
σ2

2 m (m − 1)
< 0,

B =
R

δ − µM −
σ2

2 M (M − 1)
> 0.

(7)

3. Exact solution of the VI

We explore a classical solution 8 ∈ C2 (0, ∞)∩C [0, ∞) to the
VI (4) of the form

8 (x) =

{
a1xk1 + a2xk2 + A′xm + B′xM (0 < x ≤ x)
b − log x (x > x) (8)

where a1, a2, A′, B′, b, x, k1 =
1
2

(
1 −

2µ
σ2 +

√(
2µ
σ2 − 1

)2
+

8δ
σ2

)
>

0, k2 =
1
2

(
1 −

2µ
σ2 −

√(
2µ
σ2 − 1

)2
+

8δ
σ2

)
< 0 are constants. The

solution (8) means that the indirect population control should be
activated when the bird population Xt reaches the threshold value
x. The polynomial a1xk1 + a2xk2 is the general solution of −L8 = 0
and A′xm +B′xM is the particular solution of−L8+ rxm −RxM = 0.
A direct calculation shows A′

= A, B′
= B, and k1 > m: the last one

follows from (5). Lemma 2.1 shows that limx→+08 (x) is bounded
and thus a2 = 0 since k2 < 0. Hereafter, the descriptions k1 = k
and a1 = a are employed for the sake of brevity. The solution
(8) was constructed based on the conjecture that there exists
some threshold value of x above which the population should be
controlled [1,4,6,7].

The assumed regularity of 8 at x = x leads to⎧⎪⎪⎨⎪⎪⎩
axk + Axm + BxM = b − log x,
kaxk−1

+ mAxm−1
+ MBxM−1

= −x−1
,

k (k − 1) axk−2
+ m (m − 1) Axm−2

+M (M − 1) BxM−2
= x−2

,

(9)

with the three unknowns a, b, and x. Combining the second and
third equations of (9) yields the equation of x:

xm =
−
[
MBxM (k − M) + k

]
mA (k − m)

. (10)

The classical intermediate value theorem to (10) shows that there
is unique 0 < x < ∞ that solves (10). Substituting this x into the
second equation in (9) uniquely determines a. Then, substituting
this x and a into the first equation in (9) uniquely determines b.
Consequently, the next theorem follows.

Theorem3.1. There exists unique viscosity solution8 ∈ C2 (0, ∞)∩

C [0, ∞) of the form (8) that solves the VI (4).

Remark 3.2. 8 in (8) is neither convex nor concave in (0, ∞) since
it is concave for small x > 0 and convex for x > x.

Our supplementary file analyses parameter dependence of x
for interested readers.

4. Unique solvability of the VI

We show that the exact classical solution (8) is a unique vis-
cosity solution to the VI (4) that satisfies the boundary condition
8 (0) = 0 in the pointwise sense. The proofs below are inspired
from those for an optimal investment problem having a concave
value function (Chapter 4.5 of [7]), but include different mathe-
matical techniques. In what follows, we carry out mathematical
analysis of the VI (4) from the standpoint that the value function is
its viscosity solution, and show that it is actually a unique classical
solution to the VI (4) and is analytically expressed as (8) based on a
constructive argument. We focus on continuity viscosity solutions,
which are natural candidates of solutions to VIs in singular stochas-
tic control problems [4,6,7]. For definitions of viscosity sub- and
super-differentials utilized in what follows, see [13].
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