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a b s t r a c t

This work addresses the tracking control problem for a class of high-order multi-input multi-output
(MIMO) nonlinear systems with unknown control direction and nonparametric uncertainties. By inte-
grating a matrix (rather than scalar) rate transformation with Nussbaum gain, we develop an accelerated
robust adaptive control that exhibits several attractive features: (1) it is able to achieve full-state zero-
error tracking despite unknown control direction and non-vanishing uncertainties; (2) with the proposed
control scheme, the whole tracking process seamlessly consists of the first phase of steering the tracking
error into an adjustable small residual region with accelerated convergence rate and the second phase
of further driving the error to zero; (3) before reaching the residual region, each component of the
tracking error is forced to decay at an accelerated rate that can be pre-assigned; and (4) the resultant
control action is continuous differentiable everywhere without involving excessively large initial driving
effort.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Most important systems (such as robotic systems, high speed
trains, spacecraft etc.) can be modeled by the following dynamic
equations,⎧⎨⎩

ẋi = xi+1

ẋn = F (x, p) + G(x, p)u + D(x, p, t)
y = x1

(1)

for i = 1, 2, . . . , n − 1, where xj = [xj1, . . . , xjm]
T

∈ Rm,

j = 1, . . . , n, and x =
[
xT1, . . . , x

T
n

]T
∈ Rmn is the state vector;

p ∈ Rr represents the unknown parameter vector inseparable
from system nonlinearities (i.e., F (x, p), G(x, p), and D(x, p, t) are
nonparametric uncertainties); u = [u1, . . . , um]

T
∈ Rm is con-

trol input vector of the system; y ∈ Rm is the output vector;
F (·) = [f1(·), . . . , fm(·)]T ∈ Rm is a smooth but uncertain non-
linear function vector; G(x, p) ∈ Rm×m is the control gain matrix
and D(x, p, t) = [d1(·), . . . , dm(·)]T ∈ Rm denotes all the other
system modeling uncertainties and external disturbances. Define
state tracking error as E = x1 − yd = [e1, . . . , em]

T and E(i)
=
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[
e(i)1 , . . . , e(i)m

]T
, i = 1, . . . , n−1, where yd = [yd1, . . . , ydm]T ∈ Rm

and y(i)d =

[
y(i)d1, . . . , y

(i)
dm

]T
are the known reference signal and

its ith derivatives. In this work, we seek for a tracking control
approach capable of achieving the following three objectives:
(O1) All the internal signals are bounded; the control action is
continuous differentiable; and no excessively initial large control
effort is involved;
(O2) Full-state zero-error tracking is obtained despite unknown
control direction and nonparametric uncertainties arising from
F (x, p), G(x, p), and D(x, p, t); and
(O3) The tracking process is pre-designable in that each component
of the tracking error, before reaching the residual set, has its own
pre-assigned convergence mode and convergence rate.

It poses significant challenge to realize the above-mentioned
objectives (O1)–(O3) simultaneously. As a matter of fact, although
there is a rich collection of tracking control results for system
(1), very few have been able to achieve Objectives (O1) and (O2)
concurrently. This is because in the presence of nonparametric
uncertainties, it is rather difficult to drive the tracking error to
zero with continuous (not to mention continuous differentiable)
control action [1,2]. The underlying problem becomes even more
challenging if the control direction is not known a priori, which
has gained increasing attention from control community during
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the past decades. The pioneering work that addresses unknown
control direction is from Nussbaum [3] for a class of first-order
linear systems, which has motivated various efforts on using
the Nussbaum-type function to tackle the difficulty of unknown
control direction for nonlinear systems [4,5]. In addition, some
other tools are also utilized for dealing with the problem of un-
known control directions. For example, Ref. [6] is based on periodic
switching function to cope with the unknown control direction,
whereas the method in [7] is based on monitoring function to deal
with such problem; Ref. [8] addresses the design of a sliding mode
controller for a class of uncertain nonlinear plants with unknown
sign of the high frequency gain. However, the aforementioned
results are based on SISO nonlinear (or linear) systems, thus the
control gain is just a scalar constant or time-varying function.
Due to in the MIMO nonlinear systems the control gain is matrix
form and the control direction is not known a priori, adaptive
control of such systems becomes rather difficult. In [9], an iterative
learning control for a class of MIMO uncertain nonlinear systems
with unknown control direction is proposed, in which a gain-
selector combined with a Nussbaum gain was used to probe the
correct gain matrix from the candidates in the unmixing matrix
set; however the gain matrix must remain constant. In [10], by
using a matrix decomposition technique, an adaptive controller is
developed for MIMO nonlinear systems to drive the tracking error
to zero asymptotically, but the assumption about the availability
of the partial derivatives of the control gain is imposed. In [11–13]
with the help of the newly-constructed Nussbaum analysis tool, a
promising analysis framework is established to pave the way for
tackling multiple unknown disturbances and identical control di-
rections. However, the proposed method should employ multiple
Nussbaum functions for controller design, which complicate the
stability analysis and control.

Furthermore, it is also nontrivial, although highly desirable, to
achieve Objective (O3) in practice. For example, in traffic control
systems, to prevent traffic jam at an intersection, it is desired that
each of the group vehicles should arrival at the intersection in
different time and/or pass through at different speed, rather than
arriving at the same time and same speed. There are someworks on
rate of convergence control, such as [14] for fully exponential con-
vergence, [15,16] for prescribed non-zero tracking performance
guaranteeing that the tracking error converges to an arbitrarily
small residual set with prespecified exponential convergence rate,
and [17] for possibly non-exponential convergence, but for more
general case as in (O3) that requires each component of the tracking
error, before reaching the residual region, has its own and different
convergence mode and rate and suchmode and rate can be explic-
itly and arbitrarily pre-assigned, there is no result in the literature,
to our best knowledge.

In this work, we develop a control solution for system (1) to
achieve (O1)–(O3) simultaneously. First, in order to deal with the
unknown control direction and asymmetric yet uncertain gain
matrix, we convert original gain matrix equivalently into a sym-
metric part and skew-symmetric part; Second, as Nussbaum gain
technique is normally applicable for scalar (rather than matrix)
control gain [5], we make use of Lemma 1 to circumvent this
difficulty; Third, to avoid the excessive control effort in the startup
point, a special value N(χ (t0)) = 0 is utilized in the control
scheme to render u(t0) = 0; Fourth, to achieve zero-error tracking
in the presence of time-varying control gain and non-vanishing
uncertainties, a special structure of χ̇ (the rate of the parameter χ

in Nussbaum function) is defined in the control scheme to ensure
that the tracking error is square integrable; Finally, to ensure that
each component of the tracking error has its own (different) con-
verging mode and decaying rate, a diagonal matrix rate function
β ∈ Rm×m is introduced for tracking error transformation, which
allows the tracking error, priori to reaching a small and adjustable

residual region, to have different convergence rates that can be
pre-specified by the control designer. Throughout this paper, ∥ · ∥

represents the Euclidean norm of a vector or the induced matrix
norm. Let R denote the real numbers, R+ denote the nonnegative
real numbers, and I be the unit matrix. Cn denotes the set of
functions that have continuous derivatives up to the order n and
eιt denotes the exponential function.

2. Problem formulation

2.1. Setting and conditions

In order for the system (1) to admit a feasible tracking control
solution, the following conditions are imposed.

Assumption 1. The known desired trajectory yd, aswell as its up to
(n+ 1)th derivatives, are bounded. The system states are available
for control design.

Assumption 2 ([18,19]). There exists some nonnegative constant a
and nonnegative scalar and computable smooth function φ(x) such
that

∥F (x, p) + D(x, p, t)∥ ≤ aφ(x) (2)

where φ(x) is bounded if x is bounded. In addition, F (x, p), G(x, p),
and D(x, p, t) are bounded if x is bounded.

Assumption 3. The control gain matrix G(·) ∈ Rm×m is square
but unnecessarily symmetric yet completely unknown. The only
information available for control design is that G1 =

G+GT
2 is either

positive definite or negative definite, but not certain which one.
Here it is assumed that there exist some unknown bounded con-
stants λ and λ such that, with theminimum eigenvalue λmin(t) and
the maximum eigenvalue λmax(t) of G1, the following inequality
holds λ ≤ λmin(t) < λmax(t) ≤ λ, where λ and λ have the same
sign, i.e., both being positive or negative.

Remark 1. Note that the positive or negative definiteness of G1 =
G+GT

2 ensures that for any given nonzero vector x ∈ Rm, one gets
that xTG1x > 0 or xTG1x < 0, which also implies that xTGx > 0
or xTGx < 0, i.e., sgn

{
xTGx

}
= sgn

{
xTG1x

}
, which is unknown.

Furthermore, Assumption 3 on matrix G(·) is much less restrictive
than thatG is assumed to be symmetric and positive define [20] be-
cause this corresponds to the condition that the control direction is
known. Although in [10] unknown control direction is considered,
additional constricts on the partial derivatives of the control gain
are imposed (see Assumptions 1 and 2 in [10]).

Lemma 1 ([21]). Let Γ be an m × m symmetric matrix and x ∈ Rm

be a nonzero vector, denote that ρ =
xTΓ x
xT x . Then, there is at least one

eigenvalue of Γ in the internal (−∞, ρ] and at least one in [ρ, ∞).

With this Lemma, it becomes obvious from Assumption 3 and
Remark 1 that for any given nonzero vector x ∈ Rm, we have that
xTG1x ̸= 0, denoting α(t) =

xT G1x
xT x then xTG1x = α(t)xTx, where

α(t) ̸= 0. According to Lemma 1 and Assumption 3, there exist
two constants λ and λ such that λ ≤ λmin(t) ≤ α(t) ≤ λmax(t) ≤ λ.
Moreover, if x = 0, it holds that xTG1x = ϑxTx for any nonzero
constant ϑ ∈

[
λ, λ

]
. Therefore, we can conclude that for any

given x,

xTG1x = α(t)xTx, (3)

where α(t) =

{
α(t), if x ̸= 0
ϑ, if x = 0

, which is a useful property for the

control design in the sequel. In addition, to copewith the unknown
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