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a b s t r a c t

This paper provides a novel non-model-based, data-driven stochastic H∞ control design for linear
continuous-time stochastic interconnected systems with unknown dynamics. Our contributions are
three-fold. First, we develop a tool to showhow to assign an arbitrarily small input-to-output stochastic L2
gain of the closed-loop system, by combining the gain assignment technique with the zero-sum dynamic
game-based H∞ control design. Second, robustness to dynamic uncertainties is tackled using the small-
gain theory. Third, we develop a non-model-based stochastic robust adaptive dynamic programming
(RADP) algorithm for adaptive optimal controller design. In sharp contrast to the existing methods, the
obtained algorithm is based on value iteration (VI), and the knowledge of an initial stabilizing control
policy is no longer needed. An example of a power electronic system is adopted to illustrate the obtained
results.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

H∞ control is a fundamentally important topic in control the-
ory; see, [1], and references therein. Among the research devoted
to H∞ control, a large amount of attention has been paid to the
stochastic H∞ control problem [2–5].

One way of finding a stochastic H∞ controller is by solving a
zero-sum dynamic game [4,1]. For linear systems, the H∞ con-
troller is obtained through solving the generalized algebraic Riccati
equation (GARE). However, there are several unsolved difficulties
within the existing stochastic differential game framework. First,
existing stochastic H∞ controllers are devised based on the given
stochastic L2 gain (for example, the gain is specifically picked as one
in [3, Section 3]), and there is no efficient way to assign this L2 gain
to be arbitrarily small, without requiring restrictive assumptions.
Second, solving the GARE directly requires the precise knowledge
of the systemmodel, and it is still an open problem how to conduct
a data-driven design to find the stochastic H∞ controller in the
absence of precise model knowledge.

This paper has three major contributions. First, we develop a
new tool to assign an arbitrarily small input-to-output stochastic
L2 gain for a class of partially linear interconnected systems, by
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combining the nonlinear gain assignment technique [6–9] with
the zero-sum stochastic differential game approach [1,4]. Second,
the dynamic uncertainty is considered in our model. Different
from the past literature, we investigate the influence of dynamic
uncertainties on the stochastic H∞ gain of the closed-loop system.
Third, we conduct a new data-driven H∞ control design with un-
known model knowledge. The main advantage of the data-driven
approach is that the system matrices are not necessarily known,
except assuming some bounds on thesematrices.Moreover, differ-
ent from existing learning-based methods [10–22], our method is
based on a continuous-time stochastic VI, and a stabilizing initial
control policy is no longer required to start the learning process.
Rigorous convergence and stability analysis is presented for the
proposed algorithm and the closed-loop system.

The remainder of this paper is organized as follows. The prob-
lem formulation is given in Section 2. Section 3 provides a partial-
state feedback H∞ control design with concrete robust stability
analysis. In Section 4, a data-driven online learning algorithm is
presented, along with convergence and stability analysis. An ex-
ample of a power electronic system is given in Section 5. Finally,
the conclusion is drawn in Section 6.

Notation: In this paper, S n denotes the space of all n-by-n real
symmetric matrices. S n

+
= {P ∈ S n

: P ≥ 0}. For any A ∈ Rn×m,
vec(A) = [aT1, a

T
2, . . . , a

T
m]

T , where ai ∈ Rn is the ith column of
A. For any A ∈ S n, vecs(A) = [a11, a12, . . . , a1n, a22, a23, . . . ,
an−1n, ann]T , where aij ∈ R is the (i, j)th element of A. Denote
w = [w1, w2, . . . , wq]

T as a q-dimensional standard Brownian
motion, and Ft as the σ -field generated by w(s), 0 ≤ s ≤ t .
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2. Problem formulation

Consider the following class of stochastic interconnected sys-
tems:

dx = Axdt + B

(
(z +∆1(ς, x, v))dt +

q∑
i=1

A0ixdwi

)
, (1)

dz = G

(
(u+∆2(ς, x, z, v))dt +

q∑
i=1

(E0ix+ F0iz)dwi

)
, (2)

dς = f0(ς, x)dt +
q∑

i=1

gi(ς, x)dwi, (3)

y = x, (4)

where (x, z, ς ) ∈ Rn
× Rm

× Rp is the state; u : R+ → Rm, and
v : R+ → Rmv are {Ft}-adapted random processes representing
the control input and the external disturbance of the system,
respectively; y ∈ Rq is the output; A ∈ Rn×n, B ∈ Rn×m, G ∈ Rm×m,
A0i ∈ Rm×n, E0i ∈ Rm×n, and F0i ∈ Rm×m, i = 1, 2, . . . , q, are system
matriceswithGnonsingular; f0 : Rp

×Rn
→ Rp, gi : Rp

×Rn
→ Rp,

∆1 : Rp
× Rn

× Rmv → Rm, and ∆2 : Rp
× Rn

× Rm
× Rmv → Rm

are unknown locally Lipschitz functions satisfying f0(0, 0) = 0,
gi(0, 0) = 0, ∆1(0, 0, 0) = 0, ∆2(0, 0, 0, 0) = 0. Suppose system
(1) ismean square stabilizable, with z as the input and∆1 = 0. The
ς-subsystem (3) is often referred to as the dynamic uncertainty [8].
Related forms of system (1)–(4) have been studied in [23–26].

Suppose the dynamic uncertainty (3) is unknown, and we only
know some bounds on the system matrices in (1)–(2). Before
presenting our problem formulation, we first give the following
definition:

Definition 1. We say a control design method is data-driven, if
the controller is designed directly using input–output or input-
state data of the controlled system,without using or identifying the
explicit knowledge of the mathematical model of the controlled
process.

In this paper, we aim at solving the following problem:

Problem 1. Given an arbitrary γ > 0, find a partial-state feedback
law u = µ(x, z), that does not depend on the state ς of the dynamic
uncertainty (3), via data-driven adaptive optimal control design,
such that the closed-loop system (1)–(4) (a) is exponentially stable
at the origin in the mean square sense when v ≡ 0; and (b) admits
a linear stochastic L2 gain from v to y less than or equal to γ .

Two obstacles prohibit us from solving Problem 1 directly via
the standard stochastic H∞ control technique [2–4]. First, due
to the presence of the dynamic uncertainty and the unmatched
disturbance input, the zero-sum differential game approach is not
sufficient to freely assign the stochastic L2 gain. Second, it is still
an open problem how to develop a data-driven robust adaptive
optimal control design to solve the stochasticH∞ control problem.

In this paper, we solve Problem 1 in two steps. First, assuming
all the matrices in system (1)–(2) are fully accessible, we use
backstepping to study the adaptive/optimal control for a cascade of
subsystems. The gain of each subsystem is then assigned by solv-
ing a stage H∞ optimization problem. This result is presented in
Theorem 1. Then, we develop a data-driven approach to approxi-
mate the stochastic H∞ controller via online learning. This is done
in Section 4.

3. Stochastic robust optimal control design

First, we focus on the nominal system (1)–(2), and derive the
stochastic L2 gain from ∆ to y. Consider (1) with z regarded as the

virtual control input and∆1 as an external disturbance input.Write
the cost corresponding to (1) as

J1(x(0); z, ∆1) = E
[∫

∞

0
(xTQ0x+ λ1|z|2 − γ 2

1 |∆1|
2)dt

]
,

where γ1 > 0, γ 2
1 > λ1 > 0, and Q0 = Q T

0 > 0. Then,
from stochastic differential game theory, the pair of stochastic H∞
controller and the worst case disturbance, i.e., (z∗, ∆∗1), is solved as

z∗ = −λ−11 BTP∗x ≡ −K ∗x, ∆∗1 = γ−21 BTP∗x,

where P∗ = P∗T > 0 is the solution to

0 = ATP + PA− (λ−11 − γ−21 )PBBTP +Π1(P)+ Q0, (5)

and Π1(P) =
∑q

i=1A
T
0iB

TPBA0i. Note that λ−11 − γ−21 > 0
by our definition. Since system (1) is mean square stabilizable
with H1 = 0 and z as the input, P∗ is always well defined by
[27, Corollary (11.4.14)].

Now define ξ = z − z∗. From (1) and (2), we have

dξ = F̄ξdt + Ēxdt + G

(
(u+ ∆̄2)dt +

q∑
i=1

(Ē0ix+ F0iξ )dwi

)
, (6)

where F̄ = K ∗B, Ē = K ∗A− K ∗BK ∗, Ē0i = E0i + G−1K ∗BA0i − F0iK ∗,
and ∆̄2 = ∆2 + G−1K ∗B∆1.

Consider system (6) with Ē0i = Ē = 0 and the cost

J2(ξ (0); u, ∆̄2) = E
[∫

∞

0
(ξ TWξ + λ2|u|2 − γ 2

2 |∆̄2|
2)dt

]
,

where γ2 > 0, γ 2
2 > λ2 > 0, and W = W T > 0. Then, similar

to the case for the x-system, the optimal solution pair (u∗, ∆̄∗2) is
obtained as

u∗ = −λ−12 GTM∗ξ ≡ −L∗ξ, ∆̄∗2 = γ−22 GTM∗ξ,

where M∗ = M∗T > 0 is the solution to

0 = F̄ TM +MF̄ − (λ−12 − γ−22 )MGGTM +Π2(M)+W , (7)

andΠ2(M) =
∑q

i=1F
T
0iG

TMGF0i. Note that since λ−12 −γ−22 > 0 and
G is nonsingular,M∗ is alsowell definedby [27, Corollary (11.4.14)].

Now, we rewrite system (1) and (6) in a compact form:

dζ = ADζdt + BDudt + B∆

(
∆̄dt +

q∑
i=1

Awiζdwi

)
, (8)

where ζ = [xT , ξ T
]
T , ∆̄ = [∆T

1, ∆̄T
2]

T ,

AD =

[
A− BK ∗ B

Ē F̄

]
, BD =

[
0
G

]
, B∆ =

[
B 0
0 G

]
Awi =

[
A0i 0
Ē0i F0i

]
.

Lemma 1. For any γ1, γ2 > 0, there exist Q0, λ1, λ2, and W, such
that system (8) under u = u∗ admits a finite stochastic L2 gain less
than or equal tomax{γ1, γ2}, with ∆̄ as the input and ζ as the output.

Proof. First, given any γ1 > 0 and γ2 > 0, we can pick Q0 =

Q T
0 ≥ In, 0 < λ1 < γ 2

1 , and thus fix P∗. Note from [28] that for any
W = W T > 0, limλ2→0M∗ is well defined. Since G is nonsingular,
one easily has by (7) that limλ2→0|M∗| = 0. Hence, we can pick
W > Im and a sufficiently small 0 < λ2 < γ 2

2 , such that

Q :=

[
Q0 + λ1K ∗

TK ∗ −Π3(M∗) −P∗B− ĒTM∗ −Π4(M∗)

−BTP∗ −M∗Ē −Π T
4 (M

∗) W

]
≥ In+m,
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