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a b s t r a c t

The adaptive learning control theory is extended to include the case of non-minimum phase (time-
invariant) linear systems with uncertain parameters. The existence of two approximate solutions to the
related output tracking problem is proved. Exponential tracking of periodic output reference signals is
guaranteed, alongwith the exponential estimation of the constant system parameters and of the constant
coefficients characterizing the truncated Fourier series expansion for the periodic input reference signal.
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1. Introduction

Global or semi-global exponential output tracking of suffi-
ciently smooth T -periodic signals (with known period T ) can be
achieved by the adaptive learning control for special classes of
uncertain linear and nonlinear time-invariant systems (see [1]
and [2] and references therein for the most relevant results).
Such special classes include uncertain minimum phase linear sys-
tems [3]. The reader is also referred to: [4] for the related iden-
tification approach; [5–7] (and references therein) for the most
recent results and comparative discussions on the memory-
mirrored counterpart ‘iterative/repetitive learning’; [8–11] for a
combined adaptive/iterative learning control approach. The adap-
tive learning control strategy relies on the following design steps:
(i) the uncertain T -periodic input reference, which guarantees
perfect output tracking for compatible initial conditions, is viewed
as a disturbance signal affecting the tracking error dynamics;
(ii) such T -periodic disturbance is developed in Fourier series, with
an explicit estimate of the approximation error being defined;
(iii) an adaptive control is designed, which, on the basis of the
available tracking error, estimates a finite number of Fourier co-
efficients to attenuate the effect of the above disturbance signal on
the closed loop error system. Persistency of excitation conditions
are always satisfied, owing to the orthogonality of the related basis
functions. The output tracking error is then guaranteed to expo-
nentially converge into a residual set (containing the origin), whose
diameter may be arbitrarily reduced by increasing the number of the
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estimated Fourier coefficients (this convergence property, in this
paper, will be referred to as CP). However, the adaptive learning
control problem is yet to be successfully solved for non-minimum
phase linear systems. In this case, it does not suffice to confine
the design steps to the lower part of the system that dynamically
describes the output and its time derivatives (see [3] or even [5]),
while the estimation of system parameters is reasonably foresee-
able to be involved.

The aim of this brief is to extend the adaptive learning control
theory to linear (time-invariant) systems with uncertain param-
eters, without resorting to the minimum phase assumption. We
start in Section 3 from following a design methodology that is
reminiscent of the adaptive pole placement technique for lin-
ear systems.1 The problem is suitably recast to comply with
the internal model principle scenario. However, differently from
[19–23], here the uncertain input reference is not restricted to
be generated by a finite-dimensional exosystem: an explicit ap-
proximation error (reducing with the number of estimated Fourier
coefficients) is taken into account in the related stability analysis,
in order to preserve property CP . Anyway, difficulties arise with
this approachwhen thematrix characterizing the extended system
becomes relatively large. This is due to the involved use of a rela-
tively large number of terms in the truncated Fourier series expan-
sion. The resulting introduction of poles on the stability boundary
leads to numerical issues in the presence of implementation with
finite precision arithmetics. Such difficulties are overcome by the

1 The reader is referred to [12] (see also [13–17]) for the global adaptive pole-
placement control of possibly non-minimum phase linear systems and to [18] for
the adaptive state feedback control of weakly non-minimum phase linear systems.
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adaptive learning controller of Section 4, whose design extends the
one presented in [24] to the case of uncertain system parameters.
It is a feed-forward algorithm (see [25] for a similar approach to
discrete-time systems) that uses an externalmodel to generate the
disturbance and two estimation processes to recover the uncertain
parameters. Property CP is again definitely achieved. Key-design
steps – common to both the proposed approaches – are: the use
of the new local Persistency of excitation lemma in the Appendix;
the use of a local ‘‘separation principle’’ in the involved stability
analyses2 ; persistency of excitation conditions that only depend
on the specific a priori defined output/input reference signals not
varying with the system trajectories. The prices to be paid for such
theoretical improvements are constituted by the local nature of
the results, as well as by the required run-time availability of the
output and its reference.

2. Problem statement

Consider a time-invariant linear system described by the trans-
fer function (s ∈ C)

W (s) =
gn−1sn−1

+ · · · + g0
sn + an−1sn−1 + · · · + a0

, (1)

whose parameters g0, . . . , gn−1, a0, . . . , an−1 are uncertain and
whose numerator and denominator polynomials are coprime. De-
note by (A, B, C) the minimal realization of (1) in reachability
canonical form and thus consider the system

ẋ = Ax + Bu

y = Cx, (2)

in which: x ∈ Rn is the state vector; u ∈ R is the scalar input; y ∈

R is the scalar output to be controlled. The system uncertainties
are inherited by the elements of the uncertain triple (A, B, C). Let
y∗ ∈ Cpy (py ∈ {m ∈ N,m ≫ 1}) denote any sufficiently smooth
T -periodic output reference signalwith known period T and define
the corresponding output tracking error ỹ = y − y∗. We will
show that the adaptive learning control theory can be extended to
include systems (2) that are not restricted to be minimum-phase.
In other words, we will prove that adaptive learning controls can
be designed, on the basis of the (y, y∗)-measurements, in order
to achieve the aforementioned property CP . The existence of the
periodic input reference signal (namely, u∗(t)) is related to the fol-
lowing rather natural requirement that we introduce to guarantee
the problem solvability.

Assumption 1. There exist smooth T -periodic reference signals
(x∗(t), u∗(t)) that, for compatible initial conditions x∗(0), comply
with the reference system

ẋ∗(t) = Ax∗(t) + Bu∗(t) (3)
y∗(t) = Cx∗(t).

Remark 1. Assumption 1 necessarily requires that no zeros ofW (s)
belong to Λ = {0, ±jl2π/T , l = 1, 2, . . .} (j denotes the imagi-
nary unit). In the special case (typically addressed by the internal
model theory-based context) in which the periodic signal y∗(t) is
described, for some zero or even N∗ ∈ N0, by the finite Fourier
expansion (see [26]): y∗(t) =

∑N∗

i=0ρiϕi(t), with ϕ0(t) = 1, ϕ2l(t) =
√
2 cos

(
lt 2π

T

)
, ϕ2l−1(t) =

√
2 sin

(
lt 2π

T

)
(l = 1, . . . ,N∗/2), the

output reference y∗(t) can be equivalently viewed as the output
y∗(t) = −qTw(t) of the finite-dimensional exosystem: ẇ(t) =

2 The use of such local ‘‘separation principle’’makes the adaptive learning control
worthy to be here preferred to the repetitive one.

Rw(t), w(0) = w0, with: qT being a suitable row vector; w0 being
a suitable initial condition depending on the Fourier coefficients
ρi in the y∗-expansion; the spectrum σ (R) of the square matrix
R being represented by σ (R) = {0, ±jl2π/T , 1 ≤ l ≤ N∗/2}.
Well-known necessary and sufficient conditions for the solution
to the corresponding regulator problem (see [19,21–23] for related
results) are: (i) (A, B) is stabilizable; (ii) (A, C) is detectable; (iii) the
rank condition

rk
[
A − λI B

C 0

]
= n + 1 (4)

holds for any λ ∈ σ (R), i.e. the zeros of the transfer function W (s)
do not coincide with the elements of σ (R). In particular the above
conditions guarantee that there exist a matrix Γ and a row vector
γ T satisfying Γ R = AΓ + Bγ T, CΓ + qT = 0, so that the signals
required by Assumption 1 are actually constituted by x∗ = Γ w and
u∗ = γ Tw.

3. Method I: adaptive learning control through adaptive pole
placement

We briefly start from following a design methodology that is
reminiscent of the adaptive pole placement technique for linear
systems. The problem is suitably recast to comply with the inter-
nal model principle scenario. However, here the uncertain input
reference is not restricted to be generated by a finite-dimensional
exosystem and an explicit approximation error (reducing with the
number of estimated terms in the Fourier series expansion for the
uncertain periodic input reference u∗(t)) is taken into account in
the related stability analysis.

3.1. Recasting the problem

Let us define the tracking error x̃ = x− x∗, whose dynamics are
given by:

˙̃x = Ax̃ + B(u − u∗), (5)

whereas ỹ satisfies ỹ = Cx̃. According to Assumption 1, we can
write (N ∈ N0 is a null or even design parameter)

u∗(t) =

N∑
i=0

ρ̄iϕi(t) + ε(t), |ε(t)| ≤ εN , (6)

where3 : ε(t) either is identically zero (when u∗(t) admits a finite
Fourier series expansion and N is, accordingly, sufficiently large)
or generally constitutes a T -periodic signal given by the difference
u∗(t) −

∑N
i=0ρ̄iϕi(t); the bound εN on the approximation error is

given by

εN =

[(2π
T

)τ

(N − 1)
τ−1
2

]−1
2

τ−1
2 Bντ , (7)

where τ ∈ N is the (sufficiently large) order of the time derivative
dτ u∗(t)
dtτ which the upper bound Bντ on

⏐⏐⏐ dτ u∗(t)
dtτ

⏐⏐⏐ corresponds to. Such
bound εN on the approximation error ε(t) in (6) reduces with
the number N of sinusoidal terms used to recover the uncertain
periodic input reference u∗(t).

With this in mind and differently from [3] and related papers
(resorting to minimum-phase requirements) - while following
ideas similar to the ones in [22] (though in [22] the disturbance
cancellation problem is restricted to be addressed for known linear

3 See [26]; see also [2] for more stringent theoretical approximation results.
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