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a b s t r a c t

This paper deals with the admissibility analysis and stabilization of stochastic singular Markovian
jump systems (SSMJSs) with time delays. More general conditions for the existence and uniqueness of
the impulse-free solution to delayed SSMJSs are presented. Consequently, by constructing stochastic
Lyapunov–Krasovskii functional and applying generalized Itô formula, new sufficient conditions for
the stability of SSMJSs and delayed SSMJSs are obtained in terms of strict linear matrix inequalities.
State feedback controller is designed to ensure stabilization of the delayed SSMJSs. Three illustrative
examples, including an RLC circuit network and an oil catalytic cracking process, are employed to verify
the effectiveness and usefulness of the obtained results.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The study of singular systems has attracted much attention
during the past decades [1–3]. It is well known that, besides the
finite dynamic modes, singular systems also have infinite dynamic
modes (which can generate undesired impulsive behavior) and
infinite non-dynamic modes [4,5]. Therefore, singular systems are
fundamentally different from normal state-space systems (also
known as regular systems); more importantly, the use of singular
system model can provide a more natural description of dynamic
systems in comparison with normal systems [1–5]. A consid-
erable number of fundamental concepts and results have been
extended successfully from normal systems to singular systems.
Pivotal problems for singular systems, such as stability, stabiliza-
tion, normalization, passivity, dissipativity, controller and filter de-
sign, have been investigated in quick succession; see, for instance,
[6–15], and the references therein.

On the other hand, as an important kind of hybrid systems,
Markovian jump systems are known to be powerful when rep-
resenting physical systems with abrupt structural variations, and
thus they have been successfully employed in many practical
regions such as networked control systems, economic systems,
and manufacturing systems [5,16–18]. When singular systems are
subjected to Markovian jump parameters, which leads to the well
known singular Markovian jump systems (SMJSs) [5,9]. Recently,
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SMJSs have been widely studied by many researchers; lots of
interesting results have been published such as [19–27].

Note that Itô stochastic systems have been encountered in
many branches of engineering and science [28,29]. Very recently,
stochastic singular systems (SSSs) and stochastic singular Marko-
vian jump systems (SSMJSs) have been studied [30–38]. For ex-
ample, the filtering problem for a class of stochastic descriptor
systems was addressed in [30] while the problem of robust H∞

output feedback control for uncertain stochastic singular sys-
tems was investigated in [31]; [32] considered passivity analysis
and passification of T–S fuzzy descriptor systems with stochastic
perturbation and time delay; [33] dealt with the problem of
observer-based controller design for stochastic descriptor systems
by applying a sequential design technique while the stabilization
problem of stochastic singular nonlinear hybrid systems was stud-
ied in [34].

It is worth noting that there are some key challenges for the
study of stochastic singular systems: how to derive the conditions
for the existence and uniqueness of the solution to SSSs; how to
define the non-impulsiveness; how to choose an appropriate Lya-
punov function candidate and properly utilize the Itô formula and
generalized Itô formula to show the stability of SSSs. It should be
pointed out that, the aforementionedworks either directly assume
that the solution of the SSSs exists or completely ignore the crucial
effect of the diffusion term. Recently, utilizing Kronecker product
and column stacking operator technique, the mean square admis-
sibility of singular stochastic systems with Markovian switching
was studied in [35] by transforming a SSMJS into a deterministic
singular system. Based on [35], the mean square admissibility
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and optimal control for stochastic singular systems have been
studied in [36], where the crucial effect of the diffusion term is
ignored.

Very recently, [37] and [38] reported the new sufficient con-
ditions for the existence and uniqueness of the solution to SSSs,
and the SSSs were changed into deterministic singular systems by
H-representation method. However, the sufficient conditions in
[35–38] do not relate to time-delays. Moreover, the Kronecker
product and H-representation techniques in [35,37,38] can be
used to analyze the admissibility of SSSs directly, which have not
been utilized to design controllers, observers or filters for SSSs.
Therefore, finding more general sufficient conditions for the ex-
istence and uniqueness of the impulse-free solution to SSSs and
SSMJSs with time delays and seekingmore effective techniques for
studying the corresponding synthesis problems are of considerable
importance. This motivates the present investigation.

In this paper, we address the problems of admissibility and
stabilization of SSMJSs with time delays. The first aim is to find
more complete sufficient conditions for the existence and unique-
ness of the impulse-free solution to delayed SSMJSs. To the best of
our knowledge, up to now, there are few other conditions for the
existence and uniqueness of the impulse-free solution to SSSs with
time-varying delays. At the same time, the systems equivalence
method is employed to overcome the computational complexity.
The second aim is, based on stochastic Lyapunov–Krasovskii func-
tionals and generalized Itô formula, to derive new sufficient con-
ditions for the stability of delayed SSMJSs, the obtained conditions
are given in terms of strict linear matrix inequalities (LMIs). The
third aim is to design state feedback controller so as to insure
stabilization of the delayed SSMJSs. Finally, examples including an
RLC circuit network and an oil catalytic cracking process (OCCP) are
applied to show the effectiveness and usefulness of the obtained
results.

The main contributions of this paper are summarized as fol-
lows: (i) more general conditions for the existence and unique-
ness of the impulse-free solution to delayed SSMJSs are proposed;
(ii) newconditions for the stability of delayed SSMJSs are presented
in terms of strict LMIs; (iii) stochastic Lyapunov–Krasovskii func-
tionals are employed to reflect the state delays and Markovian
jump modes information; (iv) state feedback controllers are de-
signed to stabilize the delayed SSMJSs.

Notation. The notation used throughout this paper is fairly stan-
dard. sym(A) means A + AT , deg(·) stands for the degree of a
polynomial, diag(·) represents a block diagonal matrix. For sym-
metric matrices X and Y , X > Y implies that matrix X − Y is
positive definite. Matrices, if their dimensions are not explicitly
stated, are assumed to have compatible dimensions for algebraic
operations. I and 0 denote the identity matrix and a zero ma-
trix with appropriate dimensions, respectively. Rn and Rn×m refer
to the n-dimensional Euclidean space and set of all n × m real
matrices, respectively. R+ means the set of all nonnegative real
numbers, C2,1 (Rn

× R+; R) stands for the family of all real-valued
functions V (x, t) defined on Rn

× R+, which are continuously
twice differentiable in x ∈ Rn and once differentiable in t ∈

R+. (Ω, F, P) is a complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions. E {·} represents expectation
operatorwith respect to the given probabilitymeasureP .L2[0, ∞)
is the space of square-integrable vector functions over [0, ∞), ∥·∥
refers to the spectral norm for matrices, ∥·∥2 stands for the usual
L2[0, ∞) norm. ∥·∥E2 denotes the norm in L2((Ω,F,P), [0, ∞)),
|·| is the Euclidean vector norm in Rn, ∥φ(t)∥τ̄ means Sup−τ̄≤t≤0
∥φ(t)∥.

2. Problem formulation and preliminaries

For a given complete probability space (Ω,F,P), we consider
the SSMJS with time delays represented by⎧⎨⎩

E (rt) dx (t) = [A (rt) x (t) + Ad (rt) x (t − τ (t))
+ C (rt) u (t)]dt + B (rt) x (t) dϖ (t) ,

x(t) = φ(t), ∀ t ∈ [−τ̄ , 0],
(1)

where x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the control
input;φ(t) is a vector-valued initial continuous function. τ (t) is the
unknown time-varying delay satisfying

0 ≤ τ (t) ≤ τ̄ < ∞, τ̇ (t) ≤ µ < 1, (2)

where τ̄ and µ are constant scalars.
In system (1), ϖ (t) is one-dimensional standard Brownian

motion defined on probability space (Ω,F,P) with a filtration
{Ft}t≥0 satisfying the usual conditions. x (t) is Ft-measurable and
the σ−field Ft = σ (ϖ (s) : 0 ≤ s ≤ t). Let dϖ (t) and x(t) are
linear independent and dϖ (t) has the following property:

E {dϖ (t)} = 0, E
{
dϖ (t)2

}
= dt. (3)

{rt} is a right continuous Markovian process independent of ϖ (t)
and taking values in a finite set S = {1, 2, · · · , N}. Transition
probability is given by

P {rt+h = j |rt = i } =

{
πijh + o (h) , i ̸= j
1 + πiih + o (h) , i = j

(4)

where h > 0, limh→0
o(h)
h = 0, andπij ≥ 0, for i ̸= j, is the transition

rate from mode i at time t to mode j at time t + h, satisfying

πii = −

N∑
j=1,j̸=i

πij. (5)

Π =
[
πij

]
N×N is the so-called transition rate matrix. The matrix

E (rt) ∈ Rn×n may be singular and it is assumed that rank(E (rt)) =

r ≤ n. For notation concision, in the sequel, for each rt = i ∈ S,
a matrix L (rt) will be represented by Li, for instance, the aforesaid
matrix E (rt) is depicted by Ei.

System (1) is the well-known time-delay stochastic singular
Markovian jump systems (SSMJS). When u(t) = 0, we get the
following unforced system:⎧⎨⎩

E (rt) dx (t) = [A (rt) x (t) + Ad (rt) x (t − τ (t))]dt
+ B (rt) x (t) dϖ (t) ,

x(t) = φ(t), ∀ t ∈ [−τ̄ , 0].
(6)

In order to guarantee the well-posedness of the solution to (6),
we first give the following assumption:

Assumption 1. For every i = rt ∈ S, there are a pair of invertible
matrices Mi ∈ Rn×n, N ∈ Rn×n such that one of the following
conditions is satisfied:

(1.1) MiEiN =

[
In1 0
0 Jin2

]
, MiAiN =

[
Ãi1 0
0 In2

]
, MiAdiN =[

Ãdi1 Ãdi2
0 0

]
, MiBiN =

[
B̃i1 B̃i2
0 0

]
,

(1.2) MiEiN =

[
Ir 0
0 0

]
, MiAiN =

[
Âi1 Âi2
Â3 Â4

]
, MiAdiN =

[
Âdi1 Âdi2
0 0

]
,

MiBiN =

[
B̂i1 B̂i2
0 0

]
,

(1.3) MiEiN =

[
Ir 0
0 0

]
, MiAiN =

[
Ǎi1 Ǎi2
0 Ǎi3

]
, MiAdiN =

[
Ǎdi1 Ǎdi2
0 0

]
,

MiBiN =

[
B̌i1 B̌i2
0 B̌i3

]
,



Download English Version:

https://daneshyari.com/en/article/7151479

Download Persian Version:

https://daneshyari.com/article/7151479

Daneshyari.com

https://daneshyari.com/en/article/7151479
https://daneshyari.com/article/7151479
https://daneshyari.com

