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a b s t r a c t

A crucial problem in immersion based observer design is the case where the dimension of the immersed
system is greater than that of the original system, and the analytical expression of the inverse of the
immersion is unknown. In this paper, we have proposed a method for constructing observers for such
autonomous nonlinear systems.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

An observer is a dynamical system used for accurate recon-
struction of another process or system’s state variables through
its measurable variables (inputs and outputs). Observer theory for
linear systems is well-understood and many practical observers
have been designed for both single and multi-output cases, most
prominent being Luenberger observer andKalman filter. Observers
for nonlinear systems however are much more challenging to
design, and nonlinear observer research has received considerable
attention since early 1980s [1]. Many approaches can be found in
the existing literature: (i) Filtering approach based on extending
the Kalman filter to deterministic nonlinear systems (Extended
Kalman Filter: EKF), its convergence is guaranteed under some
hypotheses for example, [2] for local asymptotic convergence in
the case of control affine nonlinear systems, and [3,4] for the
global stability limited to a particular class of nonlinear systems.
(ii) Geometric approach based on characterization of nonlinear
systems for which an observer can be designed. In this approach,
the most widespread method is the error linearization method
[5–11], which consists of characterizing nonlinear systems that
can be transformed via change of coordinates and output variables
into a linear system plus a nonlinear term depending only on the
inputs and outputs measurement. These systems can be observed
using Luenberger observer. Another approach for the error lin-
earization problem has been proposed in [12–14]. Under some
local observability hypothesis, the authors propose a change of
variables resulting from the resolution of a linear first order PDE.
From observability point of view, all the above-mentioned classes
of systems are similar to the class of linear systems in the sense that
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the observability is not affected by inputs. An extension of these
works is to characterize nonlinear systems which are observable
independently on the inputs. For single output systems [15,16],
this characterization is completely determined by a normal form of
observability (in the local generic sense), and a high gain observer
can be designed. Some extensions to multi-output systems have
been proposed in the literature [17–26]. All the observers proposed
for these systems are generally based on a normal form of ob-
servability and the design of such an observer requires an inverse
transformation.

It can be noted that the diffeomorphisms required to obtain
normal forms are generally local and consequently less applicable
for state estimation (only the trajectories that are in the domain
of the transformation can be estimated). In the presence of singu-
larities, injective immersions can be considered to obtain such a
normal form. Initiated in [27], this problem has been extensively
addressed in the control context in [19,28], and the details are
available in [29]. Contrary to normal forms based on diffeomor-
phisms transformations, the construction of an observer based on
immersion technics is a difficult task. The reasons are many and
varied: the nonlinear elements of the dynamics of normal forms
are generally unknown, the observer requires an inversion proce-
dure necessitating an optimization algorithm, thereby increasing
calculation times.

In this paper, we propose a constructive observer based on
immersion of an autonomous system into a normal form. The
immersion is achieved by embedding a system of dimension n in
a system of dimension N (generally N > n). Under some observ-
ability hypotheses, this embedding is well-defined on sufficiently
large domains of the state space. Motivated by this immersion, we
propose an algorithm for state estimation of the original system,
using an observer that does not require the knowledge of the in-
verse transformation (which is usually incalculable). This observer
is defined by a system of differential equations of dimension n+N .
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The remainder of the paper is organized as follows: Section 2
contains the preliminary results required to establish the main
result and Section 3 addresses the theorem stating themain result,
i.e. the observer, along with its proof. A simulation example is
presented in Section 4, using a simple mechanical system which
illustrates the practical applicability of the observer. Some con-
cluding remarks are given in Section 5.

2. Preliminary results and problem statement

Consider the following nonlinear systems:{
ẋ = f (x), x ∈ Rn

y = h(x), y ∈ R
(1)

where f and h are assumed to be of class C∞.{
ż = F (z), z ∈ RN

y = H(z), y ∈ R
(2)

where F , H are of class C∞.

Definition 1. We say that system (1) is immersible into system
(2), if there exists a C∞ map Φ such that for every x(0) ∈ Rn,
Φ(x(.)) is the trajectory of system (2) starting from Φ(x(0)) at
t = 0 and H(Φ(x(.))) = h(x(.)) in the interval in which both
x(.) and Φ(x(.)) are well defined. In order to distinguish between
a geometric immersion and immersion of system (1) into (2), the
mapΦ will henceforth be referred to as an S-immersion.

2.1. Normal forms and high gain observer

Under some observability hypotheses, it can be shown that sys-
tem (1) can be immersed into system (2) of the following normal
form:{
ż = Az + FN (z)b
y = z1 = Cz

(3)

where, FN is a C∞ function defined on RN , A =

⎛⎜⎜⎝
0 1 0

0
. . . 0

0 0 1
0 0 . . . 0

⎞⎟⎟⎠;

b =

⎛⎝0
.
.
.

1

⎞⎠, C =
(
1 0 0

)
.

An observer for system (3) can be constructed as:

˙̂z = Âz + FN (̂z)b +∆θK (̂z1 − y) (4)

where ∆θ is the diagonal matrix ∆θ =

⎛⎝θ 0 . . . 0
.
.
.
. . .

. . . 0
0 0 . . . θN

⎞⎠, and K is a

constant column vector that renders A + KC Hurwitz.
If the nonlinear term FN is a global Lipschitz function,

i.e. |FN (z)−FN (z ′)| ≤ c∥z−z ′
∥ for some constant c > 0, then system

(5) is an exponential observer, and its convergence rate may be
chosen arbitrarily ([15–17,21,22] and [23]). In the case where the
trajectories of system (3) lie in a compact set Z ⊂ RN , then
replacing the nonlinear dynamics FN (z) by χ (z)FN (z) (where χ is
any C∞ function which takes 1 on Z and 0 outside a bounded open
set containing Z) permits to obtain a global Lipschitz dynamics.
Moreover trajectories of the system are not changed, as they lie
in Z .

Now let us assume that there exists an S-immersion Φ which
immerses system (1) into the normal form (3). In order to estimate

the unknown state x(t) of system (1), we can encounter the follow-
ing three situations:

(1) N = n and the map Φ is a diffeomorphism. In this case an
observer for system (1) can be constructed as follows:

˙̂x = f (̂x) +

[
∂Φ

∂x
(̂x)
]−1

∆θK (h(̂x) − y). (5)

Notice that this observer does not require the knowledge of
the nonlinear term FN .

(2) N > n and the analytic expression of the nonlinear term FN
is known. In this case, x(t) can be estimated using{

˙̂z = Âz + FN (̂z)b +∆θK (̂z1 − y)
x̂(t) = Arg min

x∈Ω
∥̂z(t) −Φ(x)∥ (6)

(3) N > n and the expression of FN is unknown. In this case, the
observer in Eq. (6) cannot be used to estimate x(t).

The third case is the subject of this paper. Let us consider the
followingmotivating example in order to illustrate its importance:

Example 1. Consider the following system:⎧⎨⎩
ẋ1 = x2
ẋ2 = −x1
y = h(x1)

(7)

where h is an analytic bijective function from R onto itself. The
injectivity of h implies that system (7) is observable on R2.

Now consider the Lie derivatives of hwith respect to the vector
field f (x) = (x2,−x1)T , we obtain L0f (h)(x) = h(x1), Lf (h)(x) =

x2h′(x1), L2f (h)(x) = −x1h′(x1)+h′′(x1)x22. More generally, Lkf (h)(x) =

ϕ1(x1)+· · ·+ϕk(x1)xk2 is polynomial function in x2 with coefficients
in a ring of an analytic function of x1. Assuming that there exists
an integer N such that the rank of the jacobian of the map ΦN =

(h, . . . , LN−1
f (h)) is equal to 2, for every x. From Proposition 1, ΦN

is an embedding map from any bounded open set Ω ⊂ R2 into
RN , and the restriction of system (7) to Ω can be immersed into
a normal form (3). However the calculation of the explicit expres-
sion of FN is another matter. Calculating FN such that LNf (h)(x) =

FN (h)(x), . . . , LN−1
f (h)(x) is a difficult task (generally impossible), as

shown in the following example.

Example 2. The following simple example illustrates the practical
difficulty in the calculation of FN . Taking h(x) = x1 + sin(x1) as the
output of the dynamical system (7) gives us⎧⎨⎩

ẋ1 = x2
ẋ2 = −x1
y = x1 + sin(x1).

(8)

Clearly h is bijective, and the explicit expressions of the Lie deriva-
tives Lkf (h) are as follows:

Lf (h)(x) = x2(1 + cos(x1)), L2f (h)(x) = −x22 sin(x1) − x1(1 +

cos(x1)),
L3f (h)(x) = −x32 cos(x1) + 3x1x2 sin(x1) − x2 cos(x1) − x2,

L4f (h)(x) = x42 sin(x1)+4x1x22 cos(x1)−3x21 sin(x1)+4x22 sin(x1)+
x1 cos(x1) + x1.

A simple calculation shows that the rank of the jacobian ofΦ4 =

(h, . . . , L3f (h)) is 2 at every point of R2. However the calculation
of the explicit expression of a function F4 such that L4f (h)(x) =

F4(h(x), . . . , L3f (h)(x)) is not easy to obtain.

In this paper we have addressed this third situation, i.e. estima-
tion of x(t) in the casewhereN > n and that the explicit expression
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