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a b s t r a c t

We derive necessary and sufficient conditions for stability analysis of a positive feedback interconnection
of a discrete-time negative imaginary system and a discrete-time strictly negative imaginary system.
General stability analysis results for continuous-time negative imaginary systems connected in positive
feedback have recently been proposed. Those recent results extend previous theorems by removing
restrictive assumptions on the infinite frequency gains imposed in the earlier literature and by extending
the class of negative imaginary systems for which the results are applicable to include systems with
free body dynamics (i.e., poles at the origin). Here, we present the discrete-time counterparts of the
aforementioned recently developed results which specialise to simple and easy-to-check conditions
under specific assumptions. Last, we illustrate some of the results by several examples.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Negative imaginary systems theory is emerging as a power-
ful complement to positive real theory and passivity theory. The
negative imaginary systems class was first studied in [1]. Negative
imaginary systems arise in a wide variety of applications, includ-
ing nano-positioning systems [2–5], multi-agent systems [6,7],
lightly damped structure [8–10], vehicle platoons [11], etc. A rich
sequence of results has also appeared in the theory of negative
imaginary systems in recent years, including extensions to Hamil-
tonian systems [12], non-rational systems [13–16], non-proper
systems [13,17], infinite-dimensional systems [18], descriptor sys-
tems [19], strongly strict negative-imaginary systems [20] and
controller synthesis for negative imaginary systems [21–24]. Ac-
cording to [25,26], somepossible futurework for filtering problems
could be further developed.

Stability analysis results of positive feedback interconnections
of negative imaginary systems play a central role in negative
imaginary systems theory. [1] proposed that, under assumptions
on the gains of systems at infinite frequency, a necessary and
sufficient condition for the internal stability of a positive feedback
interconnection of negative imaginary systems can be expressed as
a one-sided restriction on the dc loop gain. This stability result was
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shown to hold true even for negative imaginary systemswith poles
on the imaginary axis [27]. These key results have subsequently
been developed further to allow negative imaginary systems to
have possible poles at the origin [28]. [29] then sought to remove
the assumptions on the infinite frequency gains, i.e.,M(∞)N(∞) =

0 and N(∞) ⩾ 0, by using integral quadratic constraint theory and
derived sufficient conditions (which are not necessary) for stabil-
ity analysis. Necessary and sufficient conditions that remove the
assumptions on the infinity frequency gains were recently derived
in [30]. In contrast with complicated matrix factorisations used
in [28] which loose intuition and restrict the applicability of the
results and in contrast with sufficiently only conditions developed
in [29], a linear shift transformation technique is used in [30] to
establish general necessary and sufficient stability analysis results
applicable for the full class of negative imaginary systems includ-
ing those with free body dynamics (i.e., poles at the origin).

The above theory has all been developed in continuous-time.
The notion of a discrete-time negative imaginary systemswas pro-
posed in [14,31] to fill the gap in the literature. By using a bilinear
transformation, a discrete-time negative imaginary lemma was
derived, in terms of a discrete-time state-space representation,
to characterise discrete-time negative imaginary systems [14,31].
Furthermore, it was shown in [14] that the stability of discrete-
time negative imaginary systems only depends on gains at z = +1
under specific assumptions analogous to the early assumptions in
continuous-time. Here, we extend the stability theorem proposed
in [14] for the full class of real, rational, proper discrete-time
negative imaginary systems available in the literature without
imposing the restrictive assumptions, i.e., P(−1)Q (−1) = 0 and
Q (−1) ⩾ 0. The results in this paper can be considered as, not
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only generalisations of previous work [14,31] but also, discrete-
time counterparts of the general continuous-time results in [30].

In this paper, we first state the definitions of discrete-time
negative imaginary systems. We then remove two restrictive as-
sumptions in the existing literature, i.e., P(−1)Q (−1) = 0 and
Q (−1) ⩾ 0, imposed in [14] and subsequently derive necessary
and sufficient conditions for internal stability of a discrete-time
negative imaginary system without poles at z = +1 and z =

−1 connected in positive feedback with a discrete-time strictly
negative imaginary system. Then, these results are extended to
the case where a discrete-time negative imaginary system with
possible poles at z = +1 is connected in positive feedback with
a discrete-time strictly negative imaginary system. Furthermore,
we specialise these general stability theorems in the single-input
single-output (SISO) setting to reveal simple and intuitive tests.
Additional multiple-input multiple-output (MIMO) specialisations
are also given as corollaries to give simple and elegant tests for
checking feedback stability. Stability conditions with or without
a loop-shifting matrix Ψ are also presented for determining the
internal stability of discrete-time negative imaginary systems con-
nected in positive feedback. Lastly, two examples are given to
illustrate the importance of some of the results.

Notation: R(a) represents the real part of a complex number a.
λ̄(A) [respectively, λ(A)] denote the largest [respectively, smallest]
eigenvalue of a square complex matrix A that has only real eigen-
values. A∗ and AT denote the complex conjugate transpose and
transpose of a complex matrix A respectively. [P(z),Q (z)] denotes
the positive feedback interconnection of P(z) and Q (z). Im denotes
an identity matrix with dimensionsm bym.

2. Preliminaries

We first recall the notion of a discrete-time negative imaginary
system with possible poles at z = +1.

Definition 1 ([14,31]). Let R(z) be a discrete-time, real, rational,
proper transfer function. Then, R(z) is said to be Discrete-Time
Negative Imaginary (D-NI) if

(1) R(z) has no poles in {z ∈ C : |z| > 1};
(2) j[R(ejθ )− R(ejθ )∗] ⩾ 0 for all θ ∈ (0, π ) except the values of θ

where z = ejθ is a pole of R(z);
(3) if z0 = ejθ0 with θ0 ∈ (0, π ) is a pole of R(z), then it is a simple

pole and the residue matrix K0 = z0−1limz→z0 (z − z0)jR(z) is
Hermitian and positive semidefinite;

(4) if z = 1 is a pole of R(z), then limz→1(z − 1)kR(z) = 0 for
all integer k ⩾ 3 and limz→1(z − 1)2R(z) is Hermitian and
positive semidefinite;

(5) if z = −1 is a pole of R(z), then limz→−1(z + 1)kR(z) = 0 for
all integer k ⩾ 3 and limz→−1(z + 1)2R(z) is Hermitian and
negative semidefinite.

[14] considers non-rational systems. To handle possibly non-
rational systems, [14] imposes a symmetric assumption. As stated
in Remark 3.2 of [14], when one restricts attention to rational
systems (as we do in this paper), the symmetric assumption is no
longer needed. The five conditions in Lemma 3.2 of [14] with the
condition corresponding to symmetry removed, are hence used to
directly define rational discrete-time systems as in Definition 1.
This definition is also identical to that used in [31].

The following definition describes discrete-time strictly nega-
tive imaginary systems.

Definition 2 ([14]). Let R(z) be a discrete-time, real, rational,
proper transfer function. Then, R(z) is said to be Discrete-Time
Strictly Negative Imaginary (D-SNI) if

(1) R(z) has no poles in {z ∈ C : |z| ⩾ 1};
(2) j[R(ejθ ) − R(ejθ )∗] > 0 for all θ ∈ (0, π ).

Fig. 1. Positive feedback interconnection of P(z) and Q (z).

3. Main results, part 1: no poles at +1 and −1

In [30], necessary and sufficient conditions for checking the
internal stability of a positive feedback interconnection of a
continuous-time, proper, negative imaginary system without poles
at the origin and a continuous-time strictly negative imaginary sys-
tem were derived. The necessary and sufficient conditions in [30]
generalised the original result in [1] by removing restrictive as-
sumptions on the infinite frequency gains of the two systems. In
this section, we consider the case where a discrete-time negative
imaginary system and a discrete-time strictly negative imaginary
system are interconnected via positive feedback as shown in Fig. 1.
We hence introduce discrete-time feedback stability theorems
that remove restrictive assumptions imposed in earlier literature
(e.g., [14]). These results are applicable for negative imaginary
systems without poles at z = +1 and z = −1 and they are hence
discrete-time counterparts of the work in Section 3 of [30].

Theorem 3. Let P(z) be a discrete-time, real, rational, proper, neg-
ative imaginary system without poles at z = +1 and z = −1,
and let Q (z) be a discrete-time, real, rational, proper, strictly negative
imaginary system. Then, [P(z),Q (z)] is internally stable if and only if

I − P(−1)Q (−1) is nonsingular,
λ̄[[I − P(−1)Q (−1)]−1(P(−1)Q (1) − I)] < 0, and
λ̄[[I − Q (1)P(−1)]−1(Q (1)P(1) − I)] < 0.

Proof. LetM(s) = P((1+ s)/(1− s)) and N(s) = Q ((1+ s)/(1− s))
via the bilinear transformation z = (1+ s)/(1− s). Then, the result
follows from [30, Theorem 9]. □

Note that the inequality conditions in Theorem 3 (and indeed in
all negative imaginary results) are one-sided restrictions because
the maximum eigenvalue of matrices, that have only real eigen-
values, can be either positive or negative.

Also, note that no poles at z = +1 in discrete-time corresponds
to no poles at the origin in continuous-time, whereas no poles
at z = −1 in discrete-time corresponds to no poles at infinite
frequency (i.e., a proper system) in continuous-time.

Theorem 3 removes the assumptions imposed in [14, Theorem
4.1], i.e., Q (−1) ⩾ 0 and P(−1)Q (−1) = 0, and as a consequence
generalises that result.

The following example is used to demonstrate the usefulness of
the result stated in Theorem 3.

Example 1. Consider a positive feedback interconnection of P(z)
and Q (z) as shown in Fig. 1 where

P(z) =

⎡⎣ −z + 1
6z + 4

−5z − 5
6z + 4

−9z2 − 10z − 1
12z2 + 8z

15z2 + 32z + 13
12z2 + 8z

⎤⎦
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