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a b s t r a c t

In this paper we consider the distributed estimation problem for continuous-time linear time-invariant
(LTI) systems. A single linear plant is observed by a network of local observers. Each local observer in the
network has access to only part of the output of the observed system, but also receives information on
the state estimates of its neighbors. Each local observer should in this way generate an estimate of the
plant state. In this paper we study the problem of existence of a reduced order distributed observer. We
show that if the observed system is observable and the network graph is a strongly connected directed
graph, then a distributed observer exists with state space dimension equal to Nn−

∑N
i=1pi, where N is the

number of network nodes, n is the state space dimension of the observed plant, and pi is the rank of the
output matrix of the observed output received by the ith local observer. In the case of a single observer,
this result specializes to the well-known minimal order observer in classical observer design.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Recently, there has been much interest in the problem of de-
signing distributed observers for estimation of the state of a given
linear time invariant plant.Whereas the classical observer problem
is to find a single observer that receives the entire measured plant
output in order to generate this state estimate, in the distributed
version the aim is to find a given number of local observers that
can communicate according to an a priori given network graph (see
Fig. 1 for an illustration). Each of the local observers in the network
receives only part of the plant output, but also information on the
state estimates of its neighbors. Each local observer should in this
way generate an estimate of the plant state. Thus, the problem of
finding a distributed observer can be interpreted as the problem of
finding a single observer that consists of a given number of local
observers, interconnected by means of an a priori given network
graph. Since each of the local observers receives only part of the
plant output, properties like observability or detectability that
might hold for the original plant output do no longer hold for the
partial output, and hence classical observer design is not applicable
for the local observer.

Among the many contributions on the distributed observer
problem we mention [1,2] and [3]. In particular, in [3–5] a state
augmented observer was constructed to cast the distributed es-
timation problem as a problem of decentralized stabilization, us-
ing the notion of fixed modes [6]. These references only discuss
discrete-time systems. More recently, in [7], the idea of putting
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the distributed observer problem in the context of decentralized
control was applied to continuous time plants. In [2,8,9] local
Luenberger observers at each node were constructed, based on
applying the Kalman observable decomposition. There, the ob-
server reconstructs a certain portion of the state solely by using
its own measurements, and uses consensus dynamics to estimate
the unobservable portions of the state at each node. Specifically,
in [1] two observer gains were designed to achieve distributed
state estimation, one for local measurements and the other for the
information exchange. In [10], a simple LMI based approach was
proposed for the design of distributed observers.

A standard result in classical observer design states that if the
plant is observable, then an observer with arbitrary fast error
convergence exists of order equal to the order of the plant, say
n, minus the rank of the output matrix, say p, [11]. It was argued
in [12] that indeed n − p is the minimal order for state observers.
Of course, similarly one can address the issue of existence of a
reduced, or even minimal, order distributed observer. This issue
will be the topic of the present paper. We assume that our plant is
a continuous-time LTI system

ẋ = Ax

y = Cx
(1)

where x ∈ Rn is the state and y ∈ Rm is the measurement output.
We partition the output y as

y =

⎡⎢⎢⎢⎣
y1
y2
...

yN

⎤⎥⎥⎥⎦
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Fig. 1. Framework for distributed state estimation.

where yi ∈ Rmi and
∑N

i=1mi = m. Accordingly, we partition the
output matrix as

C =

⎡⎢⎢⎣
C1
C2
...

CN

⎤⎥⎥⎦
with Ci ∈ Rmi×n. In addition, a directed graph with N nodes is
given. Each node in the graph will carry a local observer. The local
observer at node i has only access to themeasurement yi = Cix and
to the state estimates of its neighbors, including itself. In this paper,
a standing assumption will be that the communication graph is
strongly connected. We will also assume that the pair (C, A) is
observable. For the discrete time case, it was shown in [5] that a
distributed observer of order Nn+N −1 exists. This boundwas re-
established in [7] for continuous time plants. Again for the discrete
time case, in [9] it was shown that a distributed observer exists of
order Nn. Also in [1], under certain assumptions, a dynamic order
Nnwas shown to be sufficient. More recently, in our paper [10] we
reconfirmed that for the continuous time case a dynamic order Nn
suffices.

In the present paper we will improve all sufficient dynamic
orders established up to now and as our main result show that, for
any desired error convergence rate, a distributed observer exists
of dynamic order equal to Nn −

∑N
i=1pi, where pi is the rank of

the local output matrix Ci. This result extends in a natural way the
minimal order n − p for a single, non-distributed observer, with p
the rank of the output matrix C .

2. Preliminaries and problem formulation

2.1. Preliminaries

Notation: The rank of a given matrix M is denoted by rank M . If M
has full column rankm thenM†

= (MTM)−1MT denotes itsMoore–
Penrose inverse, so M†M = Im. The identity matrix of dimension
N will be denoted by IN . The vector 1N denotes the N-dimensional
column vector comprising of all ones. For a symmetric matrix P ,
P > 0 (P < 0) means that P is positive (negative) definite. For a set
{A1, A2, . . . , AN} ofmatrices, we use diag{A1, A2, . . . , AN} to denote
the block diagonal matrix with the Ai’s along the diagonal, and
the matrix

[
AT
1 AT

2 · · · AT
N

]T is denoted by col(A1, A2, . . . , AN ).
The Kronecker product of the matrices M1 and M2 is denoted by
M1⊗M2. In this paper,Rn will denote the n-dimensional Euclidean
space. For a p × n matrix A, ker A := {x ∈ Rn

| Ax = 0} and
im A := {Ax | x ∈ Rn

} will denote the kernel and image of
A, respectively. If V is a subspace of Rn, then V⊥ will denote the
orthogonal complement of V with respect to the standard inner
product in Rn.

In this paper, a weighted directed graph is denoted by G =

(N , E,A), where N = {1, 2, . . . ,N} is a finite nonempty set of
nodes, E ⊂ N × N is an edge set of ordered pairs of nodes, and
A = [aij] ∈ RN×N denotes the adjacency matrix. The (j, i)th entry

aji is the weight associated with the edge (i, j). We have aji ̸= 0 if
and only if (i, j) ∈ E . Otherwise aji = 0. An edge (i, j) ∈ E designates
that the information flows from node i to node j. A directed path
fromnode i1 to il is a sequence of edges (ik, ik+1), k = 1, 2, . . . , l−1
in the graph. A directed graph G is strongly connected if between
any pair of distinct nodes i and j in G, there exists a directed path
from i to j, i, j ∈ N .

The Laplacian L = [lij] ∈ RN×N of G is defined as L := D − A,
where the ith diagonal entry of the diagonal matrix D is given by
di =

∑N
j=1aij. By construction, L has a zero eigenvalue with a

corresponding eigenvector 1N (i.e., L1N = 0N ), and if the graph
is strongly connected, its algebraic multiplicity is equal to one and
all the other eigenvalues lie in the open right-half complex plane.

For strongly connected graphs G, we now review the following
lemma.

Lemma1 ([13–15]). Assume G is a strongly connected directed graph.
Then there exists a unique positive row vector r =

[
r1, . . . , rN

]
such

that rL = 0 and r1N = N. Define R := diag{r1, . . . , rN}. Then
L̂ := RL + LTR is positive semi-definite, 1T

N L̂ = 0 and L̂1N = 0.
We note that RL is the Laplacian of the balanced directed graph

obtained by adjusting theweights in the original graph. Thematrix
L̂ is the Laplacian of the undirected graph obtained by taking
the union of the edges and their reversed edges in this balanced
digraph. This undirected graph is called themirror of this balanced
graph [13].

2.2. Problem formulation and main result

Consider the continuous-time LTI system (1), where x ∈ Rn

is the state and y ∈ Rm is the measurement output. As ex-
plained in the introduction we partition the output y as y =

col(y1, . . . , yN ), where yi ∈ Rmi and
∑N

i=1mi = m. Accordingly,
C = col(C1, . . . , CN ) with Ci ∈ Rmi×n. Here, the portion yi = Cix is
assumed to be the only output information that can be acquired by
node i in the given network graph G. The rank of the local output
matrix Ci will be denoted by pi.

In this paper, a standing assumption will be that the commu-
nication graph G is a strongly connected directed graph. We will
also assume that the pair (C, A) is observable. However, (Ci, A) is
not assumed to be observable or detectable.

We will design a distributed observer for the system (1) with
the given communication network G. The distributed observer will
consist of N local observers, and the local observer at node i will
have dynamics of the following form:

żi = Nizi + Liyi + γ riMi

N∑
j=1

aij(x̂j − x̂i)

x̂i = Pizi + Qiyi

(2)

where i ∈ N , zi ∈ Rn−pi is the state of the local observer,
x̂i ∈ Rn is the estimate of plant state at node i, aij is the (i, j)th
entry of the adjacency matrix A of the given network, ri is defined
as in Lemma 1, γ ∈ R is a coupling gain to be designed, Ni ∈

R(n−pi)×(n−pi), Li ∈ R(n−pi)×mi , Mi ∈ R(n−pi)×n, Pi ∈ Rn×(n−pi) and
Qi ∈ Rn×mi are gain matrices to be designed.

The objective of distributed state estimation is to design a
network of local observers (2) that cooperatively estimate the state
of the plant (1). Such network of local observers is said to achieve
omniscience asymptotically, defined as follows:

Definition 2 ([5]). A distributed observer (2) is said to achieve
omniscience asymptotically if for all initial conditions on (1) and (2)
we have

lim
t→∞

(
x̂i(t) − x(t)

)
= 0 (3)

for all i ∈ N , i.e. the state estimate maintained by each node
asymptotically converges to the true state of the plant.
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