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a b s t r a c t

In this paper, we develop a new observer design method for nonlinear systems with large transport
delays. The new observer design is a generalization of the PDE-based backstepping-like observer design
approach. First developed for delayed linear systems, this approach relies on a modelling of the output
time-delay by a 1st order hyperbolic equation, leading to an ODE–PDE representation of the system, and
on coordinate transformations of the innovative system. The major technical challenge, that is faced in
the generalization of the approach to nonlinear systems, consists in making it applicable in the case of
an arbitrarily large time-delay D. This issue is presently coped with by redesigning the cascade observer
method to fit ODE–PDE systems. A new class of observers is thus obtained involving a set of cascaded
high-gain state observers and output predictors. The latter are defined by PDEs that provide estimates of
the system future outputs y(t + x) for all x ∈ [0,D]. The exponential stability of the observer is proved
using a set of Lyapunov functionals and its performances are illustrated by simulation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the problem of designing observers for
continuous-time systems that contain time delay has been an
active research topic, see e.g. [1,2]. Although time-delays are of
fundamentally distributed parameter nature, observer design in
the presence of these elements has proved to be possible using
finite-dimensional design tools. Accordingly, one starts with ex-
ponentially convergent state observers of ODEs (without delay)
and modify them by adding output and/or state predictors to
compensate for the time delay effect. This approach has first been
developed for linear systems in which case arbitrarily large delays
can be accounted for, see e.g. [3,4]. In the more challenging case of
nonlinear systems themaximum admissible delay (MAD) depends
on the level of nonlinearity which, typically, is of globally Lipschitz
nature. Roughly, the larger the Lipschitz constant, the smaller the
MAD. This result has been illustrated using high-gain observers
where the involved predictors proved to be useful in compensating
the delay effect up to some upper limit. To get rid of this limitation,
the concept of chain observer has been introduced [1,5–8]. Roughly,
a cascade observer consists of a number of cascaded sub-observers,
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each one of them involves a predictor that compensates for a
fraction of the total system time-delay. Therefore, for a time-delay
of any size, there is a suitable finite number of sub-observers such
that the resulting global observer is exponentially stable. So far, the
idea of cascade observer has only been developed in the context of
ODE based observer design. In the present work, we develop an
infinite-dimensional version of the cascade observer concept.

In this paper, the problem of state observation for systems
with output delay (Fig. 1) is addressed by letting the time de-
lay be what it is: a distributed parameter phenomenon. Accord-
ingly, time delay is captured through a first-order hyperbolic PDE
connected in series with the ODE that describes the system finite-
dimensional dynamics, leading to an ODE–PDE cascade represen-
tation of the system. Then, the observation problem consists in
designing an observer that provides online estimates of both the
(finite-dimensional) state of the ODE subsystem and the (infinite-
dimensional) state of the PDE sensor. This formulation of the
observer design problem has been introduced in [9] and [10]
where the ability of the backstepping design approach, to yield
full-order observers with feedback-predictors, has been demon-
strated for linear systems. Then, arbitrary time-delay sizes can be
compensated for, due to the system linearity. This paper aims at
generalizing the PDE-based backstepping-like observer design ap-
proach of [9] and [10] to nonlinear systems. Specifically, the latter
is described by an ODE of strict-feedback and globally Lipschitz
nonlinearity. To cope with the system nonlinearity, we invoke the
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Fig. 1. System structure.

principle of high-gain observer design as in [11]. In the latter,
we showed that high-gain observers, for cascade systems with
parabolic PDEs, can be made exponentially convergent provided
that the PDE domain length is sufficiently small. A similar result
can be obtained in the case of (first-order) hyperbolic PDEs. Amore
challenging problem is one of designing exponentially convergent
observers for ODE–PDE systems with nonlinear ODEs and PDEs of
arbitrarily large domain length. This problem has yet to be solved
both in the case of hyperbolic PDEs (of any order) and in the case
of heat PDEs. In this paper, we develop a solution in the case of
first-order hyperbolic PDEs using the PDE-based backstepping-like
observer design approach. One key idea is to redesign within the
ODE–PDE framework the cascade observer concept, so far only
developed in an ODE framework. Accordingly, we re-express the
initial ODE–PDE system representation in the form of m ≥ 2
fictitious ODE–PDE subsystems involving first-order hyperbolic
PDEs with domain length D/m (D being the arbitrarily-large time-
delay) and appropriate boundary conditions defining the inter-
action between the subsystems. Then, we design an observer for
each ODE–PDE subsystem using the high-gain observer principle
backstepping-like design technique. It turns out that the global
observer is composed of m (high-gain) observers connected in
series. The interconnection is such that the first partial observer is
directly driven by the physical system output. Then, the jth partial
observer is driven by a virtual output generated by the (j − 1)th
observer. Each partial observer includes an output predictor which
compensates for the effects of the fractional time-delay D/m. The
predictors are defined by simple first-order hyperbolic PDEs that
are much simpler compared to some previous works which in-
volved output and state predictors. We then use a backstepping-
like transformation of the estimation error system and construct
an appropriate Lyapunov stability functional to analyse the trans-
formed system. Doing so, we obtain sufficient conditions for the
cascade observer to be exponentially convergent. The sufficient
conditions involve theminimal numberm of partial observers: the
larger the system delay the larger the number m. Compared with
ODE-based delay-compensating observers (e.g. [5–8]), the present
observer is full-order in the sense that it estimates both the system
(finite-dimensional) state and the sensor (infinite-dimensional)
state. Also, the present output predictors feature a feedback struc-
ture, while those involved in ODE-based observers are open-loop.

The paper is organized as follows: first, the observation problem
under study is formulated in Section 2; then, the observer design
and analysis are respectively dealtwith in Sections 3 and 4; simula-
tion results are presented in Section 5; a conclusion and reference
list end the paper.

2. Observation problem formulation

As depicted by Fig. 1, the system under study consists of a
finite-dimensional nonlinear subsystem connected in series with
a time delay. Analytically, the considered output-delayed system
is described as follows:

Ẋ(t) = AX(t) + f (X(t), v(t)), t ≥ 0, (1a)

y(t) = CX(t − D) (output) (1b)

with the known matrices

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1
0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ Rn×n, c = [10 . . . 0] ∈ R1×n (1c)

where X(t) ∈ Rn is the system state vector, y(t) ∈ R is the system
output, v ∈ C0([0, ∞) : Ωv) is an external signal (control input)
taking values in some known subsetΩv ⊂ R, f ∈ C2([0, ∞) : Rn×n)
is a known bounded vector field with the triangular form:

f (X, v) =

⎛⎜⎜⎜⎝
f1(X1, v)

f2(X1, X2, v)
...

fn(X1, . . . , Xn, v)

⎞⎟⎟⎟⎠ ; (1d)

where fi : Ri
→ R. It is supposed that f (.) is globally Lipschitz with

respect to X , uniformly in v ∈ Ωv . That is, the following property
holds:

∃β0 > 0, ∀X ∈ Rn, ∀v ∈ Ωv : ∥fX (X)∥ ≤ β0. (1e)

The positive real constantD denotes a time-delay that is arbitrarily
large but known. Both the input v and output y are accessible
to measurements, but the state vector X(t) is not. Following the
approach developed in [9] and [10], the output Eq. (1b) is given an
equivalent representation in the form of a first-order hyperbolic
equation. Accordingly, the system model (1a)–(1c) rewrites as
follows:

Ẋ(t) = AX(t) + f (X(t), v(t)), t ≥ 0 (2a)

u(D, t) = CX(t) (2b)

ut (x, t) = ux(x, t), 0 ≤ x < D, t ≥ 0 (2c)

y(t) = u(0, t). (2d)

The solution of (2b)–(2c) is well known to be:

u(x, t) = CX(t + x − D), 0 ≤ x < D, t ≥ 0. (3)

That is, the boundary measurement (2d) gives the delayed output
y(t) = CX(t − D), which is identical to (1b).

We seek the design of an observer that provides accurate online
estimates of the finite-dimensional state X(t) and the distributed
state u(x, t) (0 ≤ x ≤ D). The observer must only make use of the
measurements of y(t), v(t).

Remark 1. (1) In the case of a zero function f (.) (i.e. case of linear
systems), exponentially convergent observers have been designed
in [9] and [10] using the (infinite-dimensional) backstepping trans-
formation approach. In such a linear context, there is no limitation
on the delay size.
(2) In the case of nonlinear systems (nonzero function f (.)) and
a parabolic PDE (instead of (2c)), an exponentially convergent
observer has been designed in [11] combining the backstepping
transformation and the high-gain observer design technique (this
motivated the triangular structure (1d) of the nonlinear func-
tion f (.)). The exponential convergence of the observer in [11]
was established under the condition that the PDE domain length
(presently, equivalent to the delay D) is sufficiently small.
(3) The present class of systems, described by (2a)–(2d), differs
from that [11] in that the PDE is hyperbolic type and the domain
length D is of arbitrary size which, together with the nonlinear
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