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a b s t r a c t

We consider a classical problem of control of an inverted pendulum bymeans of a horizontal motion of its
pivot point. We suppose that the control law can be non-autonomous and non-periodic w.r.t. the position
of the pendulum. It is shown that global stabilization of the vertical upward position of the pendulum
cannot be obtained for any Lipschitz control law, provided some natural assumptions.Moreover, we show
that there always exists a solution separated from the vertical position and along which the pendulum
never becomes horizontal. Hence, we also prove that global stabilization cannot be obtained in the system
where the pendulum can impact the horizontal plane (for any mechanical model of impact). Similar
results are presented for several analogous systems: a pendulum on a cart, a spherical pendulum, and
a pendulum with an additional torque control.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

One and the same property of a system, considered in differ-
ent contexts, can both be useful, and appear as an undesirable
limitation: possible stability of an inverted pendulum to arbitrary
horizontalmovements of its pivot point [1,2] turns out to be related
to the impossibility of global stabilization of a given position or
motion of the pendulum.

The problem of stabilization of the vertical upward position of
an inverted pendulum (or of an inverted pendulum on a cart) by
means of a horizontal motion on its pivot point (or by a horizontal
force, correspondingly) is a well-known problem and has been
considered bymany authors (see, e.g., [3–16]). This is, among other
things, due to the possible applications in real-life systems [17–21].

It was proved [22] that if the configuration space of a control
system has non-trivial topology, then the system cannot have a
globally asymptotically stable equilibrium. To be more precise,
if the configuration space is closed (compact without boundary),
then global stabilization cannot be obtained. One can compare this
result with the situation when relatively complex topology of the
configuration space leads to non-integrability of a Hamiltonian
system [23]. For instance, since the configuration space of the
spherical pendulum is S2, the problem of global stabilization of the
controlled spherical pendulum can be solved only by means of a
non-continuous control [7].

For the system ‘pendulum on a cart’ (its phase space is S × R3),
it is also impossible to find such a continuous control that the
system would have a globally asymptotically stable equilibrium
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position [8,24,22]. Even the problem of stabilization of the verti-
cal position of a one-degree-of-freedom simple inverted pendu-
lum does not allow continuous autonomous control which would
asymptotically lead the pendulum to the vertical from any initial
position. This follows from the fact that a continuous function on a
circle, which takes values of opposite sign, has at least two zeros,
i.e., the system has at least two equilibria (see system (1)).

The following questions naturally arise. First, do the above
statements remain true if we consider the pendulum only in the
positions where its mass point is above the pivot point (often there
exists a physical constraint in the system which does not allow
the rod to be below the plane of support and it is meaningless to
consider the pendulum in such positions). Second, is it true that
global stabilization cannot be obtained when the control law is
a time-dependent function and it is also a non-periodic function
of the position of the pendulum? For a relatively broad class of
problems, whichmay appear in practice, we show that for the both
questions the answers are positive.

The main results of the paper can be described in the following
way. For all systems considered in the paper it was shown [22] that
they do not possess a globally asymptotically stable equilibrium
and this result follows from the fact that a closed manifold cannot
be contractible. At the same time, if we restrict our consideration
to a contractible subset of the configuration space of the system,
then there exists a vector field with a unique asymptotically stable
equilibrium. However, due to limitations caused by the realization
of the control mechanism, in real systems we cannot arbitrarily
choose the right-hand side of the control system. In particular, we
show that for the inverted pendulum there exists a contractible
subset of the configuration space such that the vertical upward
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position belongs to this set, yet this equilibrium is never a global
attractor. The existence of such a set is a consequence of our
method of control — we try to stabilize the rod by means of a
horizontal motion of the pivot point.

To be more precise, we prove that there exists a solution that
does not tend to the equilibrium and the rod never becomes hori-
zontal along it. Note that this is a solution of the system without
any additional constraints. Such systems have been considered
previously by many authors (see, for instance [3,6,9–11]). Let us
now suppose that the pivot point of our pendulum is moving on
a horizontal plane of support, i.e., the rod is constrained not to be
below the horizon. The above mentioned solution still remains in
the constrained system, regardless of the model of the rod-plane
impact interaction. Therefore, we can claim that global stabiliza-
tion cannot be obtained for the constrained system, possibly non-
continuous.

The proofs are illustrative and based on the Ważewski method
[25,26] and similar to the ones in [1,2,27], where the following
system has been studied. Let us consider an inverted pendulum in
a gravitational field with its pivot point moving along a horizontal
line according to a given law of motion. It was proved that, for an
arbitrary smooth function, which describes themotion of the pivot
point, there always exists a solution such that the pendulum never
becomes horizontal along it (never falls). If the law ofmotion of the
pivot point is periodic, then there exists a periodic solutionwithout
falling.We add that similar results can be obtained bymeans of the
variational approach [28].

The paper contains two main sections. In one section we con-
sider in detail the case of control of a simple inverted pendu-
lum (system with one degree of freedom), in another section we
consider the controlled spherical pendulum and the pendulum
on a cart and also present results on the impossibility of global
stabilization.

2. Simple inverted pendulum

Consider the following control system:

q̇ = p,
ṗ = u(q, p, t) · sin q − cos q.

(1)

Here and below u ∈ Lip(R3,R) is the control of the system
defined by some locally Lipschitz function from R3 to R. System
(1) describes themotion of a pendulumwhen the acceleration of its
pivot point is given by the function u. The coordinate is chosen so
that q = 0 and q = π correspond to the horizontal positions of the
rod, q = π/2 corresponds to its vertical upward position. Without
loss of generality, we assume that the mass of the pendulum, its
length and the gravity acceleration equal 1. Note that we do not
assume that u is periodic in q.

Suppose that we are looking for a control that would stabilize
system (1) in a vicinity of a certain equilibrium position in the
following sense. Let M be a subset of the phase space of the
system such that the points of M correspond to the positions of
the pendulum in which its rod is above the horizontal line (in our
case, M = {0 < q < π}) and µ ∈ M is the equilibrium for a given
control u. We assume that the control function u is chosen in such
a way that there exists a closed subset U ⊂ M , µ ∈ U \ ∂U and a
C1-function V : U → R) with the following properties:

L1. V (µ) = 0 and V > 0 in U \ µ.
L2. Derivative V̇ with respect to system (1) is negative in U \ µ

for all t .

Since the function V can be considered as a Lyapunov function for
our system, the equilibrium µ is stable. If the following (stronger)
condition holds

Fig. 1. Exit sets for (M \ B)×R+ . Solutions are externally tangent toM ×R+ at the
points where p = 0.

L3. V̇ (x, t) ⩽ −W (x) < 0 in U \µ for all t and V (0, t) = W (0) =

0, where W ∈ C(U,R),

thenµ is asymptotically stable. For instance, such a function exists
in the following case. Suppose that for a given u, system (1) can be
written as follows in a vicinity of µ

ẋ = Ax + f (x, t),

where x = (q, p), A is a constant matrix and its eigenvalues
have negative real parts, f is a continuous function and f (t, x) =

o(∥x∥) uniformly in t . Then there exists [29] a function V satisfying
properties L1, L3.

We now show that in this case the control cannot be global. To
be more precise, the following proposition holds.

Theorem 2.1. Let u(q, p, t) ∈ Lip(R3,R) be a given control function,
µ ∈ M be an equilibrium for system (1) and t0 ∈ R. Suppose there
exists a Lyapunov function V satisfying L1 and L2, then there exists
an initial condition (q0, p0) for t = t0 and an open neighborhood
B ⊂ M of µ such that, on the interval of existence, the solution
(q(t, q0, p0), p(t, q0, p0)) remains in M \ B.

Proof. For any C1 function f from Rn to R such that f > 0
everywhere except one point (where f = 0), any level set f = ε,
for small ε > 0, is a homotopy sphere [30], and hence a sphere
Sn−1.

In our case, for small ε > 0, the set V = ε is a circle
(topologically) in the phase space. We shall denote it by S and the
corresponding ball by B.

Let us consider a curve γ1 in the phase space which connects S
with the set {q = 0, p < 0}. Similarly, let γ2 be a curve connecting
S with the set {q = π, p > 0} and γ1∩γ2 = ∅ (Fig. 1). Any solution
starting in M \ B at moment t0 can leave the set (M \ B) × R+

only through one of the following sets of the extended phase space:
S × R+, {q = 0, p ⩽ 0} × R+ or {q = π, p ⩾ 0} × R+. Here by R+

we denote the set {t ⩾ t0} ⊂ R.
Suppose that all solutions starting in (S ∪ γ1 ∪ γ2) × {t0} leave

(M \ B) × R+. If it is true, then for every point (q, p, t0) ∈ (S ∪

γ1 ∪ γ2) × {t0} there is the point of first exit of the corresponding
solution from (M \ B) × R+. This point belongs to one of the
above three sets (Fig. 1). Therefore, we have a map σ from the set
(S ∪ γ1 ∪ γ2)×{t0} to the exit set of (M \ B)×R+. Note that σ = id
on S × {t0} ∪ (γ1 ∩ {q = 0, p < 0}) × {t0} ∪ (γ2 ∩ {q = π, p >

0}) × {t0}, i.e. for any point (q0, p0, t0) that belongs to this set, we
have σ (q0, p0, t0) = (q0, p0, t0). When (q0, p0, t0) ∈ S, it follows
from the definition of S. For the setswhere q = 0, p < 0 and q = π ,
p > 0 it immediately follows from the first equation of system (1).
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